- #1

- 446

- 0

## Homework Statement

For [itex]x,y \in\mathbb{R}[/itex] define a metric on [itex]\mathbb{R}[/itex] by [tex]d_2(x,y) = |\tan^{-1}(x) - \tan^{-1}(y) |[/tex] where [itex]\tan^{-1}[/itex] is the principal branch of the inverse tangent, i.e. [itex]\tan^{-1} : \mathbb{R} \to (-\pi/2 ,\pi/2)[/itex].

If [itex](x_n)_{n\in\mathbb{N}}[/itex] is a sequence in [itex]\mathbb{R}[/itex] and [itex]x\in\mathbb{R}[/itex], show that [itex]x_n \to x[/itex] as [itex]n\to\infty[/itex] in [itex](\mathbb{R} ,d_1)[/itex] where [itex]d_1[/itex] is the standard metric [itex]d_1(x,y)=|x-y|[/itex] if and only if [itex]x_n \to x[/itex] as [itex]n\to\infty[/itex] in [itex](\mathbb{R} ,d_2)[/itex].

## The Attempt at a Solution

[itex]x_n\to x[/itex] in [itex](\mathbb{R},d_2) \iff d_2(x_n,x)\to 0[/itex]

[itex]\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\, \iff |\tan^{-1}(x_n) - \tan^{-1}(x) | \to 0[/itex]

[itex]\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\, \iff \tan^{-1}(x_n) \to \tan^{-1}(x)[/itex]

[itex]\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\, \iff x_n \to x[/itex] pointwise (since [itex]\tan^{-1} : \mathbb{R} \to (-\pi/2 ,\pi/2)[/itex] is continuous)

[itex]\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\, \iff |x_n - x| \to 0[/itex]

[itex]\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\, \iff d_1(x_n,x) \to 0[/itex]

[itex]\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\, \iff x_n\to x[/itex] in [itex](\mathbb{R},d_1)[/itex]

I'm not sure whether the pointwise bit in the middle is correct (as that seems to imply pointwise convergence and convergence in a metric is the same, when it isn't) and that is the crucial step!

Last edited: