Convert moment force at lever support

AI Thread Summary
The discussion centers on whether a clamp holding a lever can experience zero or reduced torque by balancing forces or converting rotational torque into linear tension. It is noted that while adding mass on the opposite side can counteract the weight, the goal is to achieve counterbalance without additional mass. The idea of converting clockwise moment force into linear spring tension through a mechanism at the clamp is proposed, with the lever pivoting at the center. A solution is suggested that requires a mechanism to maintain horizontal stability under applied forces. Ultimately, for the moment not to transfer to the clamp, it must be converted to a pivot.
Niki
Messages
8
Reaction score
0
TL;DR Summary
Is it possible to balance or convert the rotational force felt by a clamp holding a lever?
I am trying to determine if a clamp holding a lever with a mass at one end can experience zero or reduced torque either by balancing the forces or converting the rotational torque into another form such as linear, I’ve looked at counterbalance with Steadicams etc. but I believe this just counteracts the weight on the end of the lever and doesn’t reduce the torque at the clamp

1662461535724.png


Obviously the mass added to the end of the lever will create a cw moment on the clamp and one way to counter the force would be to add another mass onto the other side of the clamp, however is it possible to achieve a counterbalance without adding another mass, while balancing out the moment forces

Would it be possible to convert the CW moment force to a linear spring tension by adding a mechanism at the clamp could this convert the torque seen at the clamp into spring tension?

1662461578420.png
Lever would be pivoted at centre of clamp and would then rest on mechanism at front

Any help much appreciated, Thanks
 
Engineering news on Phys.org
For moment not to be transferred to the clamp, it has to be converted to a pivot.
Your solution is good, as long as the force is able to keep direction by itself.
If a platform, some mechanism to keep it horizontal regardless the applied force will be neccesary.
 
Thread 'What type of toilet do I have?'
I was enrolled in an online plumbing course at Stratford University. My plumbing textbook lists four types of residential toilets: 1# upflush toilets 2# pressure assisted toilets 3# gravity-fed, rim jet toilets and 4# gravity-fed, siphon-jet toilets. I know my toilet is not an upflush toilet because my toilet is not below the sewage line, and my toilet does not have a grinder and a pump next to it to propel waste upwards. I am about 99% sure that my toilet is not a pressure assisted...
After over 25 years of engineering, designing and analyzing bolted joints, I just learned this little fact. According to ASME B1.2, Gages and Gaging for Unified Inch Screw Threads: "The no-go gage should not pass over more than three complete turns when inserted into the internal thread of the product. " 3 turns seems like way to much. I have some really critical nuts that are of standard geometry (5/8"-11 UNC 3B) and have about 4.5 threads when you account for the chamfers on either...
Thread 'Physics of Stretch: What pressure does a band apply on a cylinder?'
Scenario 1 (figure 1) A continuous loop of elastic material is stretched around two metal bars. The top bar is attached to a load cell that reads force. The lower bar can be moved downwards to stretch the elastic material. The lower bar is moved downwards until the two bars are 1190mm apart, stretching the elastic material. The bars are 5mm thick, so the total internal loop length is 1200mm (1190mm + 5mm + 5mm). At this level of stretch, the load cell reads 45N tensile force. Key numbers...
Back
Top