Perhaps certain aspects of math, like pure computation, is not very creative, especially if computers can do it too. However, doing proofs is something that no technology (that I know of) can duplicate, and thus stems completely from the human mind. Some proofs can be very, very creative indeed. And they don't need to be long to be creative. When I first read Euclid's proof of the infinitude of primes as a kid, I was very impressed by the creativity of that proof, even though it was very short and easy to understand. Cantor's proof that there is no surjective map from a set A to its power set was another (very short) proof that really wowed me in the creativity department.
Even more creative is developing new ideas and concepts in math that turns out to be very useful in other sciences. Einstein had difficulty developing his theory of general relativity in the beginning because he needed the concept of tensors, which he didn't know of at the time. Fortunately, about 20 years prior, tensors were developed by mathematicians even though they were not a necessary tool for physical sciences at the time, but later proved to be an indispensable tool for a subject that apparently it was not initially meant for. Now that is creative!
Also, finding counterexamples is a very creative aspect in math. To prove something is false is often more difficult than proving that something is true. One must find a counterexample, and there is no fixed route for finding counterexamples. One must just find it using deep creative thinking. I once tried to find out if a product of quotient maps is a quotient map, but later learned that it wasn't true. But I wasn't convinced until I found a counterexample. It was hard to find one and I could not think of one myself. When I finally read a counterexample, I was baffled at how someone could have thought of that. Also, it requires a lot of creativity to determine the conditions that does make the assertion true.
There are many other creative aspects in math, like making generalizations of a specific well-known concept that then leads to results that apply to other concepts, developing abstract ideas that lead to very concrete results, establishing alternate definitions that apparently seem very different but lends to new ways of loooking at the same thing, alternate proofs of the same theorem that are very different from each other, and the list goes on. And there are too many examples of these other points to list them out. In summary, I believe math is very filled with creativity.