Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Convolution - Signals and Systems

  1. Nov 21, 2009 #1

    Air

    User Avatar

    I will make this my discussion thread. I have many questions to ask which I will post here. Please keep checking. All help will be appreciated.

    My first question is: For discrete signal, we use variable 'n' and for continuous signal, we use variable 't'. But is the convolution integral valid for both. E.g. the only difference would be 'n' and 't'. Tau and integral will be the same?
     
  2. jcsd
  3. Nov 25, 2009 #2
    Convolution for a CT signal is defined as
    [tex]
    y(t) = \int_{-\infty}^{\infty}x(\tau)h(t-\tau)d\tau
    [/tex]
    and for DT it is defined as
    [tex]
    y[n] = \sum_{k=-\infty}^{\infty}x[k]h[n-k]
    [/tex]

    Thus for DT signal we do not have integral but summation.

    Just to distinguish for DT case we call it convolution summation and for CT case we call it integral. But the operation is same!

    Bhupala!
     
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook




Similar Discussions: Convolution - Signals and Systems
  1. Convolution in Quartus (Replies: 1)

  2. More convolution. (Replies: 2)

  3. Convolution theorem (Replies: 2)

Loading...