Coordinate Transformations in GR

Mad Dog
Messages
8
Reaction score
0
As I try to understand GR, I find coordinate transformations just about everywhere. My question is simply: What is the reason coordinate transformations play such an important role in GR? Thanks.
 
Physics news on Phys.org
I'd say the reason is that one of the most important aspects of GR is the principle of relativity and the general covariance of its equations. Basically, that the laws of physics should be the same in any reference frame so naturally you'll want to perform coordinate trasnformations.
 
Last edited:
That and also coordinate transformation is the simplest (read: best) way to visualize reference frames.
 
In special relativity, you can can use 3 spatially orthogonal plane wave solutions of Maxwell's "free space" equations as rulers for 3 orthogonal spatial axes. The 3 rulers won't interact with each other and Maxwell's equations are linear. In general relativity, each plane wave has energy or "gravitational mass" and should attract the other plane waves, so Maxwell's "free space" equations should become nonlinear indicating that you cannot get independent plane wave solutions. This will be true of any rulers you set up, so you will have no orthogonal coordinates, except very locally. The bending of your rulers and clocks or "metric" appears as spacetime curvature.
 
Another reason is that GR permits solutions in which it is mathematically impossible for a single choice of coordinates to fully suffice at every event.
 
I'm replying here to my own question, as a contribution to the Forum:

Even after having received the answers to my question, I continued to be concerned, and finally realized the answer is simple and obvious:

The name of the field is "Relativity" and the key is right there - we're talking about how different observers will measure the same events. Different observer's points of view are expressed as observations from different reference frames, and "reference frames" is simply another way of saying "coordinate systems," so of course coordinate transformations are found everywhere in General Relativity.

The second reason is that:
-For generations whe have dealt with coordinate translations, rotations, and moving coordinate systems without thinking much about it.
-In Special Relativity we add the Lorentz Transformation (and have to think a good bit about that).
-One of the basic lessons of General Relativity is that there are no preferred coordinate systems, so now we must deal with arbitrary coordinate systems and their transformations, and learning to do this is an essential part of GR.
 
Thread 'Can this experiment break Lorentz symmetry?'
1. The Big Idea: According to Einstein’s relativity, all motion is relative. You can’t tell if you’re moving at a constant velocity without looking outside. But what if there is a universal “rest frame” (like the old idea of the “ether”)? This experiment tries to find out by looking for tiny, directional differences in how objects move inside a sealed box. 2. How It Works: The Two-Stage Process Imagine a perfectly isolated spacecraft (our lab) moving through space at some unknown speed V...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. The Relativator was sold by (as printed) Atomic Laboratories, Inc. 3086 Claremont Ave, Berkeley 5, California , which seems to be a division of Cenco Instruments (Central Scientific Company)... Source: https://www.physicsforums.com/insights/relativator-circular-slide-rule-simulated-with-desmos/ by @robphy
Does the speed of light change in a gravitational field depending on whether the direction of travel is parallel to the field, or perpendicular to the field? And is it the same in both directions at each orientation? This question could be answered experimentally to some degree of accuracy. Experiment design: Place two identical clocks A and B on the circumference of a wheel at opposite ends of the diameter of length L. The wheel is positioned upright, i.e., perpendicular to the ground...
Back
Top