Countably infinite sigma-algebra

  • Thread starter Thread starter Zaare
  • Start date Start date
  • Tags Tags
    Infinite
Zaare
Messages
54
Reaction score
0
Problem: Is there a countably infinite sigma-algebra?
I can assume there are countably number of disjoint subsets included in the sigma-algebra.
 
Physics news on Phys.org
Given there are a countable number of disjoint subsets, the number of sets in the sigma algebra has to be non-countable. It is a very simple one to one mapping of all the combinations from the countable number of subsets to all binary numbers between 0 and 1. Specifically, order the countable subsets. For any combination of subsets, the equivalent binary number has zeros for the sets omitted and 1 for sets included.

Example: .001110101... is the image of the set where the 3rd, 4th, 5th, 7th, 9th, etc. sets are include while the 1st, 2nd, 6,th, 8th, etc. sets are omitted (from the union).
 
Namaste & G'day Postulate: A strongly-knit team wins on average over a less knit one Fundamentals: - Two teams face off with 4 players each - A polo team consists of players that each have assigned to them a measure of their ability (called a "Handicap" - 10 is highest, -2 lowest) I attempted to measure close-knitness of a team in terms of standard deviation (SD) of handicaps of the players. Failure: It turns out that, more often than, a team with a higher SD wins. In my language, that...
Hi all, I've been a roulette player for more than 10 years (although I took time off here and there) and it's only now that I'm trying to understand the physics of the game. Basically my strategy in roulette is to divide the wheel roughly into two halves (let's call them A and B). My theory is that in roulette there will invariably be variance. In other words, if A comes up 5 times in a row, B will be due to come up soon. However I have been proven wrong many times, and I have seen some...
Back
Top