Counting Integers k with Satisfying Equations Involving Non-Negative Integers

  • Context: MHB 
  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Integers
Click For Summary
SUMMARY

The discussion focuses on determining the integers \( k \) within the range \( 1 < k < 2012 \) that can be expressed through the equation \( k = a^2(a^2 + 2c) - b^2(b^2 + 2c) \) for non-negative integers \( a, b, c \). It concludes that \( k \) can be any odd number greater than 1 and any multiple of 8 greater than 8. Specifically, there are 1005 odd integers and 250 multiples of 8 within the specified range, resulting in a total of 1255 valid integers for \( k \).

PREREQUISITES
  • Understanding of non-negative integers
  • Familiarity with algebraic manipulation of equations
  • Knowledge of odd and even integer properties
  • Basic number theory concepts, particularly multiples
NEXT STEPS
  • Explore the properties of odd and even integers in number theory
  • Study algebraic identities and their applications in integer equations
  • Investigate the distribution of odd numbers and multiples within specified ranges
  • Learn about generating functions and their role in counting integer solutions
USEFUL FOR

Mathematicians, educators, students studying number theory, and anyone interested in integer equations and their properties.

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Find the number of integers $k$ with $1<k<2012$ for which there exist non-negative integers $a,\,b,\,c$ satisfying the equation $a^2(a^2+2c)-b^2(b^2+2c)=k$.

($a,\,b,\,c$ are not necessarily distinct.)
 
Last edited:
Mathematics news on Phys.org
[sp]$$k = a^2(a^2+2c)-b^2(b^2+2c) = a^4 - b^4 + 2c(a^2 - b^2) = (a^2 - b^2)(a^2+b^2+2c).$$ If $a=1$ and $b=0$ then $k = 1+2c$. In that way, $k$ can be any odd number apart from $1$.

If $a=2$ and $b=0$ then $k = 8(2+c)$. In that way, $k$ can be any multiple of $8$ apart from $8$ itself.

To see that these are the only values of $k$ that can occur, notice that if $a$ and $b$ have opposite signs then $a^2-b^2$ and $a^2+b^2+2c$ will both be odd, and therefore $k$ will be odd. If $a$ and $b$ are both even, or both odd, then $a^2-b^2$ will be a multiple of $4$ and $a^2+b^2+2c$ will be even, and so $k$ will be a multiple of $8$.

There are $1005$ odd numbers between $2$ and $2011$ (inclusive), and there are $250$ multiples of $8$ between $16$ and $2008$ (inclusive), giving a total of $1255$ possible values for $k$.[/sp]
 
Opalg said:
[sp]$$k = a^2(a^2+2c)-b^2(b^2+2c) = a^4 - b^4 + 2c(a^2 - b^2) = (a^2 - b^2)(a^2+b^2+2c).$$ If $a=1$ and $b=0$ then $k = 1+2c$. In that way, $k$ can be any odd number apart from $1$.

If $a=2$ and $b=0$ then $k = 8(2+c)$. In that way, $k$ can be any multiple of $8$ apart from $8$ itself.

To see that these are the only values of $k$ that can occur, notice that if $a$ and $b$ have opposite signs then $a^2-b^2$ and $a^2+b^2+2c$ will both be odd, and therefore $k$ will be odd. If $a$ and $b$ are both even, or both odd, then $a^2-b^2$ will be a multiple of $4$ and $a^2+b^2+2c$ will be even, and so $k$ will be a multiple of $8$.

There are $1005$ odd numbers between $2$ and $2011$ (inclusive), and there are $250$ multiples of $8$ between $16$ and $2008$ (inclusive), giving a total of $1255$ possible values for $k$.[/sp]

Well done Opalg!(Yes)(Yes) And thanks for participating!:)
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 7 ·
Replies
7
Views
2K
Replies
7
Views
2K