MHB Counting Squares Challenge: Proving Formula and Evaluating Sum

AI Thread Summary
The discussion centers on the formula for counting squares in an n x n grid of dots, where it is proven that the number of squares, including those with diagonal sides, is given by s_n = (n^4 - n^2) / 12. The proof utilizes mathematical induction, breaking down the number of squares based on their positions in the grid. Additionally, the sum S = ∑(1/s_k) from k=2 to infinity is evaluated, resulting in S = 21 - 2π^2 after applying partial fraction decomposition and recognizing a telescoping series. The calculations demonstrate a clear relationship between the grid size and the total number of squares formed.
lfdahl
Gold Member
MHB
Messages
747
Reaction score
0
We have an $n \times n$ square grid of dots ($n \ge 2$).

Let $s_n$ denote the number of squares that can be constructed from the grid points.

(a). Show, that $$s_n = \frac{n^4-n^2}{12}.$$

Note, that squares with "diagonal sides" also count.

(b). Evaluate the sum:

\[S = \sum_{k = 2}^{\infty }\frac{1}{s_k}\]
 
Last edited:
Mathematics news on Phys.org
lfdahl said:
We have an $n \times n$ square grid of dots ($n \ge 2$).

Let $s_n$ denote the number of squares that can be constructed from the grid points.

(a). Show, that $$s_n = \frac{n^4-n^2}{12}.$$

Note, that squares with "diagonal sides" also count.

(b). Evaluate the sum:

\[S = \sum_{k = 2}^{\infty }\frac{1}{s_k}\]
(a)
[sp]Proving the formula for $s_n$ by induction, the base case $s_2 = 1$ is easy to check.

For the inductive step, label the rows and columns from $1$ to $n$. Then $s_{n-1}$ is the number of squares whose vertices are all in the first $n-1$ rows and columns of the $n\times n$ grid. Let $u_n$ be the number of squares with at least one vertex in column $n$, and let $v_n$ be the number of squares with no vertices in column $n$ but at least one vertex in row $n$. Then $s_n = s_{n-1} + u_n + v_n.$

[TIKZ][scale=0.5]
\foreach \x in {1,...,8}
\foreach \y in {1,...,8}
{
\fill [gray] (\x,\y) circle (2pt) ;
\draw (\x,0) node{$\x$} ;
\draw (0,\y) node{$\y$} ;
}
\draw[thin,gray,dashed] (1,7.5) -- (7.5,7.5) ;
\draw[thin,gray,dashed] (7.5,1) -- (7.5,8.2) ;
\foreach \x in {3,...,7}
\foreach \y in {1,...,3}
\fill [red] (\x,\y) circle (3pt) ;
\draw[thin,red] (8,3) -- (3,1) -- (1,6) -- (6,8) -- cycle ;
\draw[thin,red] (8,3) -- (5,3) -- (5,6) -- (8,6) -- cycle ;
\fill [blue] (8,3) circle (3pt) ;
[/TIKZ]
To calculate $u_n$, notice that the number of squares whose lowest vertex in column $n$ is at the point $(n,k)$ is $k(n-k)$. [In the above diagram, $n=8$, $k=3$, so $(n,k)$ is the blue dot. The possible locations for the lowest of the remaining three vertices are the red dots. Two of the resulting squares are shown in red. There are $k(n-k) = 3\times5$ red squares in this case. They are the dots in rows $1$ to $k$ and columns $k$ to $n-1$.]

Therefore $$u_n = \sum_{k=1}^{n-1}k(n-k) = \tfrac12n^2(n-1) - \tfrac16(n-1)n(2n-1) = \tfrac16n(n-1)(n+1).$$

The next step is to find $v_n$. Every square that counts towards $v_n$ must lie in the $(n-1)\times(n-1)$ grid consisting of rows $2$ to $n$ and columns $1$ to $n-1$ of the $n\times n$ grid. We are looking for the number of squares with at least one vertex in the top row of this $(n-1)\times(n-1)$ grid. The calculation for that is exactly the same as that for $u_{n-1}$. Therefore $v_n = u_{n-1} = \frac16(n-1)(n-2)n$.

Now for the actual inductive step. Assume that $s_{n-1} = \tfrac1{12}\bigl((n-1)^4 - (n-1)^2\bigr) = \tfrac1{12}(n-1)^2n(n-2).$ Then $$\begin{aligned}s_n &= s_{n-1} + u_n + v_n \\ &= \tfrac1{12}n(n-1)^2(n-2) + \tfrac16n(n-1)(n+1) + \tfrac 16n(n-1)(n-2) \\ &= \tfrac1{12}n(n-1)\bigl((n-1)(n-2) + 2(n+1) + 2(n-2)\bigr) \\ &= \tfrac1{12}n(n-1)(n^2+n) \\ &= \tfrac1{12}n^2(n-1)(n+1) = \tfrac1{12}(n^4 - n^2), \end{aligned}$$ as required. That completes the inductive proof.[/sp]

(b)
[sp]$$\frac{1}{s_k} = \frac{12}{k^2(k-1)(k+1)} = -\frac{12}{k^2} + \frac6{k-1} - \frac6{k+1},$$ using partial fractions. Therefore $$S = \sum_{k = 2}^{\infty }\frac{1}{s_k}= -\sum_{k=2}^\infty \frac{12}{k^2} + \sum_{k=2}^\infty\Bigl(\frac6{k-1} - \frac6{k+1}\Bigr).$$ For the first of those sums, use the famous result $$\sum_{k=1}^\infty \frac1{k^2} = \frac{\pi^2}6,$$ so that $$\sum_{k=2}^\infty \frac{12}{k^2} = 2\pi^2 - 12$$. The second sum is a telescoping series in which only the early terms $6+3$ survive cancellation. So $S = - (2\pi^2 - 12) + 9 = 21 - 2\pi^2.$

[/sp]
 
Last edited:
Opalg said:
(a)
[sp]Proving the formula for $s_n$ by induction, the base case $s_2 = 1$ is easy to check.

For the inductive step, label the rows and columns from $1$ to $n$. Then $s_{n-1}$ is the number of squares whose vertices are all in the first $n-1$ rows and columns of the $n\times n$ grid. Let $u_n$ be the number of squares with at least one vertex in column $n$, and let $v_n$ be the number of squares with no vertices in column $n$ but at least one vertex in row $n$. Then $s_n = s_{n-1} + u_n + v_n.$

[TIKZ][scale=0.5]
\foreach \x in {1,...,8}
\foreach \y in {1,...,8}
{
\fill [gray] (\x,\y) circle (2pt) ;
\draw (\x,0) node{$\x$} ;
\draw (0,\y) node{$\y$} ;
}
\draw[thin,gray,dashed] (1,7.5) -- (7.5,7.5) ;
\draw[thin,gray,dashed] (7.5,1) -- (7.5,8.2) ;
\foreach \x in {3,...,7}
\foreach \y in {1,...,3}
\fill [red] (\x,\y) circle (3pt) ;
\draw[thin,red] (8,3) -- (3,1) -- (1,6) -- (6,8) -- cycle ;
\draw[thin,red] (8,3) -- (5,3) -- (5,6) -- (8,6) -- cycle ;
\fill [blue] (8,3) circle (3pt) ;
[/TIKZ]
To calculate $u_n$, notice that the number of squares whose lowest vertex in column $n$ is at the point $(n,k)$ is $k(n-k)$. [In the above diagram, $n=8$, $k=3$, so $(n,k)$ is the blue dot. The possible locations for the lowest of the remaining three vertices are the red dots. Two of the resulting squares are shown in red. There are $k(n-k) = 3\times5$ red squares in this case. They are the dots in rows $1$ to $k$ and columns $k$ to $n-1$.]

Therefore $$u_n = \sum_{k=1}^{n-1}k(n-k) = \tfrac12n^2(n-1) - \tfrac16(n-1)n(2n-1) = \tfrac16n(n-1)(n+1).$$

The next step is to find $v_n$. Every square that counts towards $v_n$ must lie in the $(n-1)\times(n-1)$ grid consisting of rows $2$ to $n$ and columns $1$ to $n-1$ of the $n\times n$ grid. We are looking for the number of squares with at least one vertex in the top row of this $(n-1)\times(n-1)$ grid. The calculation for that is exactly the same as that for $u_{n-1}$. Therefore $v_n = u_{n-1} = \frac16(n-1)(n-2)n$.

Now for the actual inductive step. Assume that $s_{n-1} = \tfrac1{12}\bigl((n-1)^4 - (n-1)^2\bigr) = \tfrac1{12}(n-1)^2n(n-2).$ Then $$\begin{aligned}s_n &= s_{n-1} + u_n + v_n \\ &= \tfrac1{12}n(n-1)^2(n-2) + \tfrac16n(n-1)(n+1) + \tfrac 16n(n-1)(n-2) \\ &= \tfrac1{12}n(n-1)\bigl((n-1)(n-2) + 2(n+1) + 2(n-2)\bigr) \\ &= \tfrac1{12}n(n-1)(n^2+n) \\ &= \tfrac1{12}n^2(n-1)(n+1) = \tfrac1{12}(n^4 - n^2), \end{aligned}$$ as required. That completes the inductive proof.[/sp]

(b)
[sp]$$\frac{1}{s_k} = \frac{12}{k^2(k-1)(k+1)} = -\frac{12}{k^2} + \frac6{k-1} - \frac6{k+1},$$ using partial fractions. Therefore $$S = \sum_{k = 2}^{\infty }\frac{1}{s_k}= -\sum_{k=2}^\infty \frac{12}{k^2} + \sum_{k=2}^\infty\Bigl(\frac6{k-1} - \frac6{k+1}\Bigr).$$ For the first of those sums, use the famous result $$\sum_{k=1}^\infty \frac1{k^2} = \frac{\pi^2}6,$$ so that $$\sum_{k=2}^\infty \frac{12}{k^2} = 2\pi^2 - 12$$. The second sum is a telescoping series in which only the early terms $6+3$ survive cancellation. So $S = - (2\pi^2 - 12) + 9 = 21 - 2\pi^2.$

[/sp]

Thankyou very much, Opalg for an exemplary contribution!(Handshake)
 
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...

Similar threads

Back
Top