MHB Cumulative distribution function

Click For Summary
The discussion revolves around the cumulative distribution function (CDF) of a new random variable defined as \( Y = F_X(X) \), where \( F_X \) is a strictly monotonic distribution function for the random variable \( X \). There is clarification on the notation, emphasizing that \( F_X(x) \) represents a numerical value for a given \( x \), while \( Y \) should be expressed as \( Y = F_X(X) \) to indicate a transformation of the random variable \( X \). The conversation highlights that since \( F_X \) is strictly monotonic, it possesses an inverse, \( F_X^{-1} \), which is crucial for deriving the CDF of \( Y \). The final query seeks further simplification of the derived expression for \( F_Y(y) \). Understanding these transformations and their implications on the distribution functions is essential for accurate statistical analysis.
Julio1
Messages
66
Reaction score
0
Hi !, my problem is the following:

Let $F_X (x)$ an distribution function strictly monotone for the random variable $X$ and it's defined the new random variable $Y=F_X (X).$ Find the cumulative distribution function of $Y$.
In this case, $F_X (x)$ is an cdf, but I don't how does for find the cdf of $Y.$ I think that need have the density function, but I don't have is information.
 
Last edited:
Mathematics news on Phys.org
Julio said:
Let $F_X (x)$ an distribution function strictly monotone for the random variable $X$ and it's defined the new random variable $Y=F_X (x).$
I don't understand the phrase "it's defined the new random variable $Y=F_X (x)$". $F_X(x)$, for each given number $x$, is a number. There is no random variable here. Recall that a random variable is a function from the sample space to $\Bbb R$. Do you mean $Y=F_X (X)$, i.e., $Y=F_X\circ X$?

In mathematics, uppercase and lowercase letters often denote different objects.
 
Evgeny.Makarov said:
I don't understand the phrase "it's defined the new random variable $Y=F_X (x)$". $F_X(x)$, for each given number $x$, is a number. There is no random variable here. Recall that a random variable is a function from the sample space to $\Bbb R$. Do you mean $Y=F_X (X)$, i.e., $Y=F_X\circ X$?

In mathematics, uppercase and lowercase letters often denote different objects.

Thanks!, you're right, the correct is $Y=F_X (X).$ In this case, $Y=F_X(X)$ is an transformation?
 
Julio said:
In this case, $Y=F_X(X)$ is an transformation?
I am not sure what you mean by this.

Since $F_X$ is strictly monotonic, it has an inverse $F_X^{-1}$. So
\[
F_Y(y)=\text{Pr}(Y<y)=\text{Pr}(F_X(X)<y)=\text{Pr}(F_X^{-1}(F_X(X))<F_X^{-1}(y))=\text{Pr}(X<F_X^{-1}(y))=\ldots
\]
Can you simplify this further?
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
Replies
2
Views
1K
  • · Replies 6 ·
Replies
6
Views
2K
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K