Yuqing said:
Bernoulli's principle plays little part in lift and is used as a simple method of calculating the pressure distribution on the surface of an object.
Calculating the pressure distribution can't be done using just Bernoulli, you'd have to be able to calculate the speed distribution as well, and Bernoulli principle doesn't provide a means to calculate how an airfoil diverts the air flow, and the resulting pressure and speed distributions. You'd have to somehow calculate either the speed or pressure distributions using a more complex mathematical model, and the process for doing this can determine both speed and pressure distributions without relying on Bernoulli equation as a final step to convert from one to the other. The speed and pressure distributions don't quite follow Bernoulli because of turblence, and within the boundary layer, pressure is related to the adjacent airflow, not the speed of the airflow within the boundary layer.
Note that a wing could be 'instrumented' by placing pressure or speed sensors on the wing surfaces, then Bernoulli's equation could be used to appoximate speed given sampled pressure readings, or vice versa.
How is Bernoulli's principle able to be used at all?
A much better example of Bernoulli principle is Venturi principle. A gas or fluid is force to flow through a narrowing cone, and the narrowing of the cone (the Bernoulli principle part), plus wall friction and viscosity reduce the pressure of that flow at the narrow end of the cone. One common use is a device to drain water from Aquariums:
http://andysworld.org.uk/aquablog/?postid=247
If you follow the Cadian patent, you eventually get to images of the internals of this device. Figure 4 shows it operating as a vacuum pump. The top is connected to a tap, the bottom is the flow exit, the side is connected to the drain hose, and the pressure in the chamber under the cone exit is lower than ambient, allowing it to suck up water via the side connector. In Figure 5, the flow exit is closed, to allow the same connections to be use to refill an Aquarium.
Python Syphon diagram
Another practical usage of Bernoulli is the pitot tube on an aircraft. The pitot tube faces forwards, and the acceleration of the air affected by the pitot tube results in a increase in pressure within the pitot tube, related to the dynamic pressure component of Bernoulli equation. The static port is used to measure the ambient pressure of the air and is oriented perpendicular to the flow, and located so it's 'hides' underneath a boundary layer in order to sense the ambient pressure of the air just outside the boundary layer. The relative speed of the air versus the pitot and static ports is the same, yet the pitot port senses ambient + dynamic pressure in a Bernoulli like reaction, while the static port only senses the static pressure component, avoiding the Bernoulli related connection between relative speed and pressure, by operating inside a boundary layer, where Bernoulli principle doesn't apply.
Am I right in assuming that Bernoulli's principle can only be used in very ideal approximations and the truth deviates from it?
Yes Bernoulli equations are an approximation of real world effect, and don't apply to interactions between solids and gas or fluids where significant work is done. If the amount of work done and tubulence factors are relatively small, then Bernoulli equation is a reasonable approximation. Normally Bernoulli principle applies best to situations where the flow is constrained by a pipe or tube, such as the Venturi based pump and pitot tube examples above. In an open environment such as a solid object flowing through a gas or fluid, the calculations of lift, drag, and pitching torque factors require something based on the more complex Navier Stokes equations.