(adsbygoogle = window.adsbygoogle || []).push({}); 1. The problem statement, all variables and given/known data

Cyclotron resonance for a spheroidal energy surface.Consider the energy surface

[tex] \epsilon(\mathbf{k}) = \hbar^2 \left( \frac{k_x^2 + k_y^2}{2m_t} + \frac{k_z^2}{2m_l} \right) [/tex]

wheremis the transverse mass parameter and_{t}mis the longitudinal mass parameter. A surface on which [itex] \epsilon(\mathbf{k}) [/itex] is constant will be a spheroid. Use the equation of motion with [itex] \mathbf{v} = \hbar^{-1} \nabla_{\mathbf{k}} \epsilon [/itex] to show that [itex] \omega_c = eB/(m_l m_t)^{1/2}c [/itex] when the static magnetic field_{l}Blies in thexyplane.

2. Relevant equations

Dynamics of Bloch Electrons

The equation of motion for an electron subject to the periodic potential of a crystal lattice is

[tex] \hbar \frac{d\mathbf{k}}{dt} = -\frac{e}{c}\mathbf{v} \times \mathbf{B} \ \ \ \textrm{cgs} [/tex]

[tex] \hbar \frac{d\mathbf{k}}{dt} = -e\mathbf{v} \times \mathbf{B} \ \ \ \textrm{SI} [/tex]

3. The attempt at a solution

[tex] \mathbf{v} = \hbar^{-1} \nabla_{\mathbf{k}} \epsilon(\mathbf{k}) = \hbar^{-1} \left( \hat{k}_x \frac{\partial}{\partial k_x} + \hat{k}_y \frac{\partial}{\partial k_y} + \hat{k}_z \frac{\partial}{\partial k_z} \right) \hbar^2 \left( \frac{k_x^2 + k_y^2}{2m_t} + \frac{k_z^2}{2m_l} \right) [/tex]

[tex] = \hbar \left( \hat{k}_x \frac{k_x}{m_t} + \hat{k}_y \frac{k_y}{m_t} + \hat{k}_z \frac{k_z}{m_l} \right) [/tex]

Apply the equation of motion with

[tex] \mathbf{B} = B_x \hat{x} + B_y \hat{y} [/tex]

[tex] \frac{d\mathbf{k}}{dt} = -\frac{e}{c}\left( \hat{k}_x \frac{k_x}{m_t} + \hat{k}_y \frac{k_y}{m_t} + \hat{k}_z \frac{k_z}{m_l} \right) \times (B_x \hat{x} + B_y \hat{y}) [/tex]

Right so, um how am I supposed to proceed to compute such a cross product? :uhh:

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Homework Help: Cyclotron Resonance (Solid State Physics)

**Physics Forums | Science Articles, Homework Help, Discussion**