MHB David's question at Yahoo Answers (horizontal tangente plane).

  • Thread starter Thread starter Fernando Revilla
  • Start date Start date
  • Tags Tags
    Plane
Fernando Revilla
Gold Member
MHB
Messages
631
Reaction score
0
David's question at Yahoo! Answers (horizontal tangent plane).

Here is the question:

Find the point(s) on the surface at which the tangent plane is horizontal.? z = 3 − x^2 − y^2 + 8y
(x, y, z) = ( )

Here is a link to the question:

Find the point(s) on the surface at which the tangent plane is horizontal.? - Yahoo! Answers

I have posted a link there to this topic so the OP can find my response.


P.S.
Of course I meant in the title tangent instead of tangente (It is hard to forget our mother tongue). :)
 
Last edited:
Mathematics news on Phys.org
Hello David,

The equation of the tangent plane to a surface $\phi :z=f(x,y)$ at the point $P_0(x_0,y_0,z_0)$ of $\phi$ is

$\pi: \phi_x(P_0)(x-x_0)+\phi_y(P_0)(y-y_0)-1(z-z_0)=0$

The plane $\pi$ is horizontal if and only if $\phi_x(P_0)=\phi_y(P_0)=0$. In our case if and only if $-2x_0=0$ and $-2y_0+8=0$. We get $x_0=0,y_0=4$.

As $P_0$ belongs to the surface, $z_0=3-0^2-4^2+8\cdot 4=19$. The solution is $(x_0,y_0,z_0)=(0,4,19)$.
 
Another way to do this: z= 3 − x^2 − y^2 + 8y can be thought of as "level surface": f(x, y, z)= z+ x^2+ y^2- 8y= 3. The gradient, \nabla f= 2x\vec{i}+ (2y- 8)\vec{j}+ \vec{k}, is perpendicular to the surface and so the tangent plane (which is, of course, also perpendicular to the normal curve) is parallel to the xy-plane if and only if that gradient is vertical- that is, that 2x= 0 and 2y- 8= 0.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top