MHB Define matrix to get a row operation of type 1

  • Thread starter Thread starter mathmari
  • Start date Start date
  • Tags Tags
    Matrix Row Type
mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :o

We have the matrices \begin{equation*}a=\begin{pmatrix}1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9\end{pmatrix}, \ \ E_{1,3}=\begin{pmatrix}0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{pmatrix}, \ \ u_n=\begin{pmatrix}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 &0 & 1\end{pmatrix}\end{equation*}

I have calculated:
\begin{align*}\left (u_n+2E_{1,3}\right )a&=\left (\begin{pmatrix}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 &0 & 1\end{pmatrix}+2\begin{pmatrix}0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{pmatrix}\right )\begin{pmatrix}1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9\end{pmatrix} \\ &=\left (\begin{pmatrix}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 &0 & 1\end{pmatrix}+\begin{pmatrix}0 & 0 & 2 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{pmatrix}\right )\begin{pmatrix}1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9\end{pmatrix} \\ &= \begin{pmatrix}1 & 0 & 2 \\ 0 & 1 & 0 \\ 0 &0 & 1\end{pmatrix}\begin{pmatrix}1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9\end{pmatrix} \\ &= \begin{pmatrix}15 & 18 & 21 \\ 4 & 5 & 6 \\ 7 & 8 & 9\end{pmatrix}\end{align*}

Let $a \in \mathbb{R}^{n\times m}$. Determine a matrix $b \in \mathbb{R}^{n\times n}$, such that the product $ba$ is a row operation of type 1.

The row operatioon of type 1 is that we multiply one row by a scalar and add it to another row. For that do we define $b$ to be as above, i.e. in the form $\left (u_n+sE_{i,j}\right )$ ? (Wondering)
 
Physics news on Phys.org
Hey mathmari!

Yep.
In the example we saw that we added 2 times row 3 to the first row.
So now we generalize to s times row j that we add to row i. (Thinking)
 
Klaas van Aarsen said:
Yep.
In the example we saw that we added 2 times row 3 to the first row.
So now we generalize to s times row j that we add to row i. (Thinking)

Ok! Thank you! (Sun)
 
Thread 'How to define a vector field?'
Hello! In one book I saw that function ##V## of 3 variables ##V_x, V_y, V_z## (vector field in 3D) can be decomposed in a Taylor series without higher-order terms (partial derivative of second power and higher) at point ##(0,0,0)## such way: I think so: higher-order terms can be neglected because partial derivative of second power and higher are equal to 0. Is this true? And how to define vector field correctly for this case? (In the book I found nothing and my attempt was wrong...

Similar threads

  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 9 ·
Replies
9
Views
3K
  • · Replies 14 ·
Replies
14
Views
3K
  • · Replies 34 ·
2
Replies
34
Views
2K
Replies
31
Views
3K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 15 ·
Replies
15
Views
2K