MHB Define matrix to get a row operation of type 1

  • Thread starter Thread starter mathmari
  • Start date Start date
  • Tags Tags
    Matrix Row Type
mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :o

We have the matrices \begin{equation*}a=\begin{pmatrix}1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9\end{pmatrix}, \ \ E_{1,3}=\begin{pmatrix}0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{pmatrix}, \ \ u_n=\begin{pmatrix}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 &0 & 1\end{pmatrix}\end{equation*}

I have calculated:
\begin{align*}\left (u_n+2E_{1,3}\right )a&=\left (\begin{pmatrix}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 &0 & 1\end{pmatrix}+2\begin{pmatrix}0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{pmatrix}\right )\begin{pmatrix}1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9\end{pmatrix} \\ &=\left (\begin{pmatrix}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 &0 & 1\end{pmatrix}+\begin{pmatrix}0 & 0 & 2 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{pmatrix}\right )\begin{pmatrix}1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9\end{pmatrix} \\ &= \begin{pmatrix}1 & 0 & 2 \\ 0 & 1 & 0 \\ 0 &0 & 1\end{pmatrix}\begin{pmatrix}1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9\end{pmatrix} \\ &= \begin{pmatrix}15 & 18 & 21 \\ 4 & 5 & 6 \\ 7 & 8 & 9\end{pmatrix}\end{align*}

Let $a \in \mathbb{R}^{n\times m}$. Determine a matrix $b \in \mathbb{R}^{n\times n}$, such that the product $ba$ is a row operation of type 1.

The row operatioon of type 1 is that we multiply one row by a scalar and add it to another row. For that do we define $b$ to be as above, i.e. in the form $\left (u_n+sE_{i,j}\right )$ ? (Wondering)
 
Physics news on Phys.org
Hey mathmari!

Yep.
In the example we saw that we added 2 times row 3 to the first row.
So now we generalize to s times row j that we add to row i. (Thinking)
 
Klaas van Aarsen said:
Yep.
In the example we saw that we added 2 times row 3 to the first row.
So now we generalize to s times row j that we add to row i. (Thinking)

Ok! Thank you! (Sun)
 
The world of 2\times 2 complex matrices is very colorful. They form a Banach-algebra, they act on spinors, they contain the quaternions, SU(2), su(2), SL(2,\mathbb C), sl(2,\mathbb C). Furthermore, with the determinant as Euclidean or pseudo-Euclidean norm, isu(2) is a 3-dimensional Euclidean space, \mathbb RI\oplus isu(2) is a Minkowski space with signature (1,3), i\mathbb RI\oplus su(2) is a Minkowski space with signature (3,1), SU(2) is the double cover of SO(3), sl(2,\mathbb C) is the...

Similar threads