AKG
Science Advisor
Homework Helper
- 2,559
- 4
2 = {0,1} = {{},{0}} = {{},{{}}}
21 is the set of functions from 1 to 2. A function from 1 to 2 is a set of ordered pairs such that the first element in a pair is an element of 1 and the second is an element of 2, and there are no two distinct pairs that have the same first co-ordinate (this last bit just says that functions are not one-to-many).
There are two functions from 1 to 2. Recall 1 = {0} = {{}}, and 2 is what it says above. One function maps 0 to 0, and the other maps it to 1. So
21 = {{(0,0)}, {(0,1)}}
The ordered pair (x,y) is {{x}, {x,y}}, so continuing:
= {{{{0}, {0,0}}}, {{{0}, {0,1}}}}
= {{{{{}},{{}}}},{{{{}},{{},{{}}}}}}
= {{{{{}}}},{{{{}},{{},{{}}}}}}
And the function I gave before defines a well-order on Z, but it is not a choice function. Given a collection C of nonempty sets, a choice function maps each S in C to an element of S. You can regard Z as a collection of sets, but the function isn't supposed to map each integer to an element of itself. If it is a choice function, it's entirely a coincidence. It is just supposed to help define a well-order. A well-order is a binary relation satisfying some certain properties. Given the function I defined, we can now define a relation R by:
xRy iff f(x)<f(y)
You can check that this is a well-ordering.
Don't confuse choice functions with well-orderings.
21 is the set of functions from 1 to 2. A function from 1 to 2 is a set of ordered pairs such that the first element in a pair is an element of 1 and the second is an element of 2, and there are no two distinct pairs that have the same first co-ordinate (this last bit just says that functions are not one-to-many).
There are two functions from 1 to 2. Recall 1 = {0} = {{}}, and 2 is what it says above. One function maps 0 to 0, and the other maps it to 1. So
21 = {{(0,0)}, {(0,1)}}
The ordered pair (x,y) is {{x}, {x,y}}, so continuing:
= {{{{0}, {0,0}}}, {{{0}, {0,1}}}}
= {{{{{}},{{}}}},{{{{}},{{},{{}}}}}}
= {{{{{}}}},{{{{}},{{},{{}}}}}}
And the function I gave before defines a well-order on Z, but it is not a choice function. Given a collection C of nonempty sets, a choice function maps each S in C to an element of S. You can regard Z as a collection of sets, but the function isn't supposed to map each integer to an element of itself. If it is a choice function, it's entirely a coincidence. It is just supposed to help define a well-order. A well-order is a binary relation satisfying some certain properties. Given the function I defined, we can now define a relation R by:
xRy iff f(x)<f(y)
You can check that this is a well-ordering.
Don't confuse choice functions with well-orderings.