(adsbygoogle = window.adsbygoogle || []).push({}); 1. The problem statement, all variables and given/known data

Find the area under the cosine curve y=cosx from x=0 to x=b, where 0 is less than b is less than or equal to pi/2.

2. Relevant equations

[tex]\Sigma[/tex]cos kx = [sin(1/2)(nx) cos(1/2)(n+1)x]/sin(1/2)x

3. The attempt at a solution

I let n be a large integer and divided the interval [0,b] by n equal subintervals of length b/n.

The heights of the subintervals are:

cos(b/n), cos(2b/n), ..., cos(nb/n)

So, the sum of the areas of these subintervals (rectangles) is:

S_{n}=cos(b/n)(b/n) + cos(2b/n)(b/n) + ..., + cos(nb/n)(b/n)

Using the formula S_{n}=[tex]\Sigma[/tex]cos kx = [sin(1/2)(nx) cos(1/2)(n+1)x]/sin(1/2)x, with x=b/n, I got:

Area=the limit as n approaches infinity of S_{n}

Substituting x=b/n, S_{n}=(b/n)[sin(b/2)*cos((n+1)b/2n)]/sin(b/2n)

Now, this is where I get confused. I get odd results when I apply the limit n approaches infinity:

In the numerator, the cos becomes cos(b/2(1+1/n)), which approaches cos(b/2) as n approaches infinity. So, the numerator is sin(b/2)cos(b/2). In the denominator, sin(b/2n) approaches sin0 as n approaches infinity and sin0=0. There's something wrong with my denominator, I think. Also, the whole quotient is multiplied by (b/n), which would make the quotient approach 0 as n approaches infinity, right?

The book says the following:

If we make theta = b/2n, then theta approaches 0 as n approaches infinity, and using the limit as theta approaches 0 of sin(theta)/theta we see that:

(b/n)(1/sin(b/2n) = 2(b/2n)/sin(b/2n) = 2(theta/sin(theta)), which approaches 2 as n approaches infinity. The book says that these facts lead the the answer: area=to the limit as n approaches infinity of S_{n}= 2sin(b/2)cos(b/2)=sin(b).

I don't understand the operations in the line above--can someone explain? I don't see how (b/n)(1/sin(b/2n) = 2(b/2n)/sin(b/2n); where did that 2 come from?

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Homework Help: Definite integrals and areas under the curve

**Physics Forums | Science Articles, Homework Help, Discussion**