- #1
- 155
- 5
Dear friends,I know the definition, from A.N. Kolmogorov and S.V. Fomin's Элементы теории функций и функционального анализа, of Lebesgue integral of measurable function ##f:X\to \mathbb{C}## on ##X,\mu(X)<\infty## as the limit
##\int_X fd\mu:=\lim_{n\to\infty}\int_Xf_nd\mu=\lim_{n\to\infty}\sum_{k=1}^\infty y_{n,k}\mu(A_{n,k})##
where ##\{f_n\}## is a sequence of simple, i.e. taking countably many (not necessarily finitely) values ##y_{n,k}## for ##k=1,2,\ldots##, functions ##f_n:X\to\mathbb{C}## uniformly converging to ##f##, and ##\{y_{n,k}\}=f_n(A_{n,k})## where ##\forall i\ne j\quad A_{n,i}\cap A_{n,j}=\emptyset##. If ##\mu## is not finite but is ##\sigma##-finite with ##X=\bigsqcup_{j=1}^\infty X_j## then ##\int_{X}fd\mu:=\sum_{j=1}^\infty\int_{X_j}fd\mu##, provided that ##\sum_{j=1}^\infty\int_{X_j}|f|d\mu<\infty##.
I read other authors defining the Lebesgue integral for non-negative functions ##g:X\to[0,+\infty]##, where ##\mu(X)\le\infty##, by using simple non-negative functions ##s_i## taking only finitely many values on measurable sets ##A_i## in the following way:
I have not been able to find more about it, since the texts that are available to me all use Kolmogorov-Fomin's definition, but I am convinced that such definitions are equivalent. From what I know -I have finished Kolmogorov-Fomin's Элементы теории функций и функционального анализа, which significantly overlaps with the English language translation Introductory Real Analysis by the same authors- I would say that it would be enough to prove the equivalence for non-negative functions ##g:X\to[0,+\infty)##.
If they are equivalent, how can it be proved?
I uncountably thank you and wish you a happy 2015!
##\int_X fd\mu:=\lim_{n\to\infty}\int_Xf_nd\mu=\lim_{n\to\infty}\sum_{k=1}^\infty y_{n,k}\mu(A_{n,k})##
where ##\{f_n\}## is a sequence of simple, i.e. taking countably many (not necessarily finitely) values ##y_{n,k}## for ##k=1,2,\ldots##, functions ##f_n:X\to\mathbb{C}## uniformly converging to ##f##, and ##\{y_{n,k}\}=f_n(A_{n,k})## where ##\forall i\ne j\quad A_{n,i}\cap A_{n,j}=\emptyset##. If ##\mu## is not finite but is ##\sigma##-finite with ##X=\bigsqcup_{j=1}^\infty X_j## then ##\int_{X}fd\mu:=\sum_{j=1}^\infty\int_{X_j}fd\mu##, provided that ##\sum_{j=1}^\infty\int_{X_j}|f|d\mu<\infty##.
I read other authors defining the Lebesgue integral for non-negative functions ##g:X\to[0,+\infty]##, where ##\mu(X)\le\infty##, by using simple non-negative functions ##s_i## taking only finitely many values on measurable sets ##A_i## in the following way:
##\int_X gd\mu:=\sup\{\sum_i s_i\mu(A_i):\forall x\in X\quad s_i(x)\le g(x)\}##
and in general in the following way, provided that ##\int_X|f|d\mu<\infty##:
##\int_Xfd\mu:=\int_X \text{Re}f_+d\mu-\int_X \text{Re}f_-d\mu+i(\int_X \text{Im}f_+d\mu-\int_X \text{Im}f_-d\mu)##
where subscript ##\pm## is used to define ##g_+(x):=\max\{g(x),0\}## and ##g_-(x):=-\min\{g(x),0\}## for any measurable function ##g##.
I have not been able to find more about it, since the texts that are available to me all use Kolmogorov-Fomin's definition, but I am convinced that such definitions are equivalent. From what I know -I have finished Kolmogorov-Fomin's Элементы теории функций и функционального анализа, which significantly overlaps with the English language translation Introductory Real Analysis by the same authors- I would say that it would be enough to prove the equivalence for non-negative functions ##g:X\to[0,+\infty)##.
If they are equivalent, how can it be proved?
I uncountably thank you and wish you a happy 2015!