Degenerate time indep. perturbation theory

ice109
Messages
1,707
Reaction score
6
why in time independent degenerate perturbation we diagonalize the matrix of the perturbation part of the hamilitonian and not the original hamiltonian?
 
Physics news on Phys.org
Because the unperturbed part is just proportional to the unit matrix since all states in the degenerate subspace have the same energy.
 
jensa said:
Because the unperturbed part is just proportional to the unit matrix since all states in the degenerate subspace have the same energy.
what? the bold part is true and i agree with.

the italicized part isn't true, firstly since i just did a problem where the matrix representation of the unperturbed part had off diagonals, secondly because an unperturbed part which was proportional to the identity would imply that it's already diagonalized and hence no degeneracy and hence no need for degenerate theory.

i'm thinking it's because the the operator/matrix that diagonalizes the perturbed part also diagonalizes the unperturbed part. but I'm probably wrong.
 
Of course it depends on what basis you are using if the matrix representation is diagonal or not. I assumed that you are working in an eigen-basis of the unperturbed Hamiltonian. In this basis the matrix representation of the unperturbed Hamiltonian is diagonal with entries corresponding to the eigen-energies, right? As far as the degenerate subspace is concerned the hamiltonian is diagonal with the same eigen-energies, hence it is proportional to the unit matrix.

The point of degenerate perturbation theory is that can choose a basis of the degenerate subspace arbitrarily and obviously it is most convenient to choose this basis such that it diagonalizes the perturbation. Then once we have made this choice of basis we can perform regular (non-degenerate) perturbation.

The reason why we do not care about diagonalizing the unperturbed part is because any linear combination of states within the degenerate subspace will also be an eigenstate of the unperturbed part with the degenerate energy. This is just another way of saying that the unperturbed Hamiltonian in this subspace is represented by a matrix proportional to the unit matrix.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
If we release an electron around a positively charged sphere, the initial state of electron is a linear combination of Hydrogen-like states. According to quantum mechanics, evolution of time would not change this initial state because the potential is time independent. However, classically we expect the electron to collide with the sphere. So, it seems that the quantum and classics predict different behaviours!

Similar threads

Replies
3
Views
1K
Replies
7
Views
3K
Replies
12
Views
3K
Replies
14
Views
2K
Replies
1
Views
2K
Back
Top