DeltaG and DeltaA calculation for heating a gas at constant volume

zacc
Messages
8
Reaction score
0
Summary:: Gibbs and Helmholtz energies calculations for heating an ideal gas at constant volume

I am solving a problem involving an ideal gas that undergoes several chained changes of state. One of the steps asks to calculate the change in Gibbs Energy (DeltaG) and Helmholtz energy (Delta A) for 0.1 mol of the gas being heated from 20 oC to 120 oC at constant volume. The initial volume is 4.0 L. I am stuck here.

In natural variables dG is given by dG=VdP-SdT. The first term is easily calculated by replacing V by nRT/P and integrating.The second term is what I don't know what to do with it. Every textbook that I have checked so far have examples where T is constant so the second term is not an issue but not in this problem. The same problem is also found with Helmholtz energy: dA=-PdV - SdT. The first term is zero because dV=0 but then I am stuck again with the second term.

Any help is greatly appreciated!
 
Physics news on Phys.org
Is this a homework problem?
 
Hello. Not really. It is a problem that I am solving on my own from an old textbook in Thermodynamics.
 
zacc said:
Hello. Not really. It is a problem that I am solving on my own from an old textbook in Thermodynamics.
Well, anyway, homework-like problems are considered homework problems, so I am moving it to a homework forum.

Can you please provide an exact word-for-word statement of the problem?

Is the gas mono-atomic, diatomic, or something else?

You should be using ##\Delta G=\Delta H-\Delta (TS)## and ##\Delta A=\Delta U-\Delta (TS)##
 
Last edited:
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top