Dense subset and extension of uniformly continuous function

Click For Summary
In the discussion, participants explore the proof of extending a uniformly continuous function defined on a dense subset of a metric space to the entire space. The initial approach involves defining the extension using limits of sequences from the dense subset, ensuring that the limits are well-defined due to the uniform continuity of the function. A key point raised is that uniform continuity does not depend on compactness, as it allows for a consistent delta value across the entire domain. The distinction between ordinary continuity and uniform continuity is emphasized, particularly regarding how delta values depend on epsilon and the point in question. The conversation concludes with a suggestion to rename the extension for clarity.
mahler1
Messages
217
Reaction score
0
1. Homework Statement .
Let ##(X,d)## be a metric space, ##D \subset X## a dense subset, and ##f: D→ℝ## a uniformly continuous function. Prove that f has a unique extension to all ##X##.



3. The Attempt at a Solution .

I have some ideas but not the complete proof. If ##x \in D##, then I define ##f'(x)=f(x)##, so let ##x \in X \setminus D##. ##D## is a dense subset, so there exists ##(x_n)_{n≥1}## ##\subset D## such that ##x_n→x##. I define ##f'(x)=\lim_{n\rightarrow +\infty} {x_n}##. Observe that this limit makes sense since ##(f(x_n)_n≥1## is a Cauchy sequence (to prove this one has to use the fact that f is uniformly continuous) in ##ℝ##. ##ℝ## is complete, so the sequence is convergent. Then I should check that ##f'## is well defined, in other words, if there are two different sequences ##(x_n)_{n≥1}## and ##(y_n)_{n≥1}##in ##D## converging to a point ##x##, then it must be ##\lim_{n\rightarrow +\infty} {x_n}##=##\lim_{n\rightarrow +\infty} {y_n}## (this is easy to prove). Now I want to prove that f' is uniformly continuous, this means that for every ##ε>0## ##\exists δ_ε>0##:
##d(x,y)<δ_ε## implies ##|f'(x)-f'(y)|<ε##. Here I got totally stuck. This is an exercise belonging to the topic of compact metric spaces so I suppose I have to use something about compact spaces, the problem is that ##ℝ## is not compact, so I don't know where should I use some information about compactness.
 
Physics news on Phys.org
You passed over the key point of existence, which is that for f' to be well-defined, you need
\lim_{n\to \infty} f(x_n) = \lim_{n\to \infty} f(y_n).

And I don't understand what this has to do with compact metric spaces, the uniform continuity of f' will come from f regardless of what kind of space X is.
 
  • Like
Likes 1 person
After you have attended to OfficeShredders point you can think about this:

A function can be uniformly continuous on all of R -- consider for example f(x) = x. So you don't need to worry about compactness. But you do need to focus on what uniformly continuous means.

With ordinary continuity people say : for every ##\epsilon ## you can find a ##\delta ## blah, blah. A lot of fuss is made about the fact that the ##\delta## depends on ##\epsilon##. What no one EVER says, is that ##\delta## also depends on x. So if you look at a function like f(x) = 1/x on (0,1), it is continuous there, but ##\delta## gets smaller and smaller as you approach zero -- that is, it depends on x.

Uniform continuity means that the ##\delta## does NOT depend on x. That's it. 1/x will never qualify on (0,1).

Now take your extension and compare it to what you know about the original function.

By the way, I wish you had called the extension something other than ##f' \text{ like } f^+\text{ or} f_{ext}##.
 
  • Like
Likes 1 person
Question: A clock's minute hand has length 4 and its hour hand has length 3. What is the distance between the tips at the moment when it is increasing most rapidly?(Putnam Exam Question) Answer: Making assumption that both the hands moves at constant angular velocities, the answer is ## \sqrt{7} .## But don't you think this assumption is somewhat doubtful and wrong?

Similar threads

Replies
34
Views
3K
  • · Replies 13 ·
Replies
13
Views
2K
  • · Replies 13 ·
Replies
13
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
11
Views
2K
Replies
17
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 14 ·
Replies
14
Views
2K
  • · Replies 40 ·
2
Replies
40
Views
4K