(adsbygoogle = window.adsbygoogle || []).push({}); 1. The problem statement, all variables and given/known data

I want to derive a formula for deflection w(x) from the Euler-Bernoulli beam equation. It's essentially only four integrations but I'm not sure about my boundary conditions, particularly wrt shear. The beam is a cantilever with a point load at the unsupported end.

And apologies in advance for the clumsy latex...

2. Relevant equations

P = load

w = deflection = 0 when x =0

[tex]\frac{dw}{dx}[/tex]= slope = 0 when x =0

EI[tex]\frac{d^{2}w}{dx^{2}}[/tex] = bending moment = 0 when x = L

-EI[tex]\frac{d^{3}w}{dx^{}3}[/tex] = shear force = 0 when?

I guess my question is: what boundary condition do I need to get rid of the C[tex]_{1}[/tex] after the first integration and I suppose if this is the right way to go about this at all!

3. The attempt at a solution

Here's what I've done so far:

EI[tex]\frac{d^{4}w}{dx^{4}}[/tex]=P

EIEI[tex]\frac{d^{3}w}{dx^{3}}[/tex]=Px + C[tex]_{1}[/tex]

I've left C[tex]_{1}[/tex] here and carried it through since I don't have a clue about the shear BC.

EI[tex]\frac{d^{2}w}{dx^{2}}[/tex]=P[tex]\frac{x^{2}}{2}[/tex] + C[tex]_{1}[/tex]x +C[tex]_{2}[/tex]

EI[tex]\frac{d^{2}w}{dx^{2}}[/tex] = bending moment = 0 when x = L, so

C[tex]_{2}[/tex]=-[tex]\frac{PL^{2}}{2}[/tex]-C[tex]_{1}[/tex]L

EI[tex]\frac{d^{2}w}{dx^{2}}[/tex]=P[tex]\frac{x^{2}}{2}[/tex] + C[tex]_{1}[/tex]x - [tex]\frac{PL^{2}}{2}[/tex]-C[tex]_{1}[/tex]L

EI[tex]\frac{dw}{dx}[/tex]=[tex]\frac{Px^{3}}{6}[/tex]+C[tex]_{1}[/tex][tex]\frac{x^{2}}{2}[/tex]-[[tex]\frac{PL^{2}}{2}[/tex]-C[tex]_{1}[/tex]L]x + C[tex]_{3}[/tex]

[tex]\frac{dw}{dx}[/tex] = 0 when x = 0 so C[tex]_{3}[/tex]=0

and finally

EIw=[tex]\frac{Px^{4}}{24}[/tex]+[tex]\frac{C_{1}x^{3}}{6}[/tex]-[[tex]\frac{PL^{2}}{2}[/tex]-C[tex]_{1}[/tex]L][tex]\frac{x^{2}}{2}[/tex] + C[tex]_{4}[/tex]

w=0 when x=0 so C[tex]_{4}[/tex]=0

so:

EIw=[tex]\frac{Px^{4}}{24}[/tex]+[tex]\frac{C_{1}x^{3}}{6}[/tex]-[[tex]\frac{PL^{2}}{2}[/tex]-C[tex]_{1}[/tex]L][tex]\frac{x^{2}}{2}[/tex]

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Derivation of Deflection from Euler-Bernoulli Beam Equation

**Physics Forums | Science Articles, Homework Help, Discussion**