Derivation of planetary orbit equation with Lagrangian

  • I
  • Thread starter TimeRip496
  • Start date
  • #1
TimeRip496
254
5
I am stuck at this part page 1,
$$\frac{\partial{L}}{\partial{\dot{φ}}}=\mu{r^2}\dot{φ}=const=l------->\dot{φ}=\frac{l}{\mu{r^2}}...........................(8)$$
Why is this a constant? Isn't r and dφ/dt variables of time?

Source: http://www.pha.jhu.edu/~kknizhni/Mechanics/Derivation_of_Planetary_Orbit_Equation.pdf [Broken]
 
Last edited by a moderator:

Answers and Replies

  • #2
wrobel
Science Advisor
Insights Author
997
858
it is because ##\frac{\partial L}{\partial \varphi}=0## and due to the Lagrange equation: ##\frac{d}{dt}\frac{\partial L}{\partial \dot\varphi}=\frac{\partial L}{\partial \varphi}## one gets ##\frac{d}{dt}\frac{\partial L}{\partial \dot\varphi}=0##
 
  • Like
Likes vanhees71 and TimeRip496
  • #3
TimeRip496
254
5
it is because ##\frac{\partial L}{\partial \varphi}=0## and due to the Lagrange equation: ##\frac{d}{dt}\frac{\partial L}{\partial \dot\varphi}=\frac{\partial L}{\partial \varphi}## one gets ##\frac{d}{dt}\frac{\partial L}{\partial \dot\varphi}=0##
ok Thanks a lot!
I have one more question as to how did the source get this w(φ) = Acos(φ+d)? The equation is below eqn(14) which is stated in here " which has the well known solution w(φ) = Acos(φ+d), where both A and are constants. We can always choose d= 0 by a convenient choice of φ"
 
Last edited:
  • #4
vanhees71
Science Advisor
Insights Author
Gold Member
2021 Award
20,783
11,624
The most general solution of the differential equation
$$\frac{\mathrm{d}^2 w}{\mathrm{d} \varphi^2}=-w$$
is given by
$$w(\varphi)=A_1 \cos \varphi+A_2 \sin \varphi,$$
where ##A_1## and ##A_2## are constants of integration. This follows, because for a homogeneous 2nd-order linear differential equation the solution is the linear combination of two arbitrary linearly independent solutions, and cos and sin fulfill these conditions.

Now you can write this general solution also in another form,
$$w(\varphi)=A \cos(\varphi+\delta),$$
where ##A## and ##\delta## are constants. To see this just use the addition theorem for cos
$$w(\varphi)=A \cos \delta \cos \varphi - A \sin \delta \sin \varphi.$$
Comparing with the general solution above you have
$$A_1=A \cos \delta, \quad A_2=-A \sin \delta,$$
and you always find ##A>0## and ##\delta \in (-\pi,\pi]## to fulfill these equations. First we have
$$A=\sqrt{A_1^2+A_2^2}, \quad \delta =-\mathrm{sign} A_2 \arccos \left (\frac{A_1}{\sqrt{A_1^2+A_2^2}} \right).$$
So indeed the given solution is the most general one for the differential equation for ##w##.
 
  • #5
TimeRip496
254
5
The most general solution of the differential equation
$$\frac{\mathrm{d}^2 w}{\mathrm{d} \varphi^2}=-w$$
is given by
$$w(\varphi)=A_1 \cos \varphi+A_2 \sin \varphi,$$
where ##A_1## and ##A_2## are constants of integration. This follows, because for a homogeneous 2nd-order linear differential equation the solution is the linear combination of two arbitrary linearly independent solutions, and cos and sin fulfill these conditions.

Now you can write this general solution also in another form,
$$w(\varphi)=A \cos(\varphi+\delta),$$
where ##A## and ##\delta## are constants. To see this just use the addition theorem for cos
$$w(\varphi)=A \cos \delta \cos \varphi - A \sin \delta \sin \varphi.$$
Comparing with the general solution above you have
$$A_1=A \cos \delta, \quad A_2=-A \sin \delta,$$
and you always find ##A>0## and ##\delta \in (-\pi,\pi]## to fulfill these equations. First we have
$$A=\sqrt{A_1^2+A_2^2}, \quad \delta =-\mathrm{sign} A_2 \arccos \left (\frac{A_1}{\sqrt{A_1^2+A_2^2}} \right).$$
So indeed the given solution is the most general one for the differential equation for ##w##.
Thanks a lot for the reply! But i am stuck at this part
and you always find ##A>0## and ##\delta \in (-\pi,\pi]## to fulfill these equations. First we have
$$A=\sqrt{A_1^2+A_2^2}, \quad \delta =-\mathrm{sign} A_2 \arccos \left (\frac{A_1}{\sqrt{A_1^2+A_2^2}} \right).$$
So indeed the given solution is the most general one for the differential equation for ##w##.
Isn't $$\quad \delta=arccos(\frac{A_1}{A})=-arcsin(\frac{A_2}{A})$$?
Besides do you mean that $$w(\varphi)=A \cos(\varphi+\delta),$$ is more general than $$w(\varphi)=A_1 \cos \varphi+A_2 \sin \varphi,$$? If so, I can't see the reason behind it.
 
  • #6
vanhees71
Science Advisor
Insights Author
Gold Member
2021 Award
20,783
11,624
No, both equations are equivalent, as demonstrated in the previous posting. You can always map from the pair ##(A_1,A_2)## of integration constants to the pair ##(A,\delta)##. It just depends on what you consider more convenient. In this case, it's easier to see that the orbit is a conic section (ellipse, parabola, hyperbola), using the ##(A,\delta)## notation.
 
  • #7
TimeRip496
254
5
No, both equations are equivalent, as demonstrated in the previous posting. You can always map from the pair ##(A_1,A_2)## of integration constants to the pair ##(A,\delta)##. It just depends on what you consider more convenient. In this case, it's easier to see that the orbit is a conic section (ellipse, parabola, hyperbola), using the ##(A,\delta)## notation.
Oh I see. But how did you obtain this $$\quad \delta =-\mathrm{sign} A_2 \arccos \left (\frac{A_1}{\sqrt{A_1^2+A_2^2}} \right).$$?
 

Suggested for: Derivation of planetary orbit equation with Lagrangian

  • Last Post
Replies
2
Views
1K
Replies
3
Views
2K
Replies
7
Views
2K
Replies
6
Views
6K
Replies
9
Views
1K
  • Last Post
Replies
1
Views
3K
Replies
13
Views
2K
Replies
2
Views
1K
Replies
7
Views
5K
Top