MHB Derivative Notation: Clarifying Confusion

Click For Summary
The discussion clarifies confusion around derivative notation, particularly for the function \(f(x) = 2x^\sqrt{2}\). It confirms that using \(\frac{df(x)}{dx}\) is acceptable and can be preferable to \(\frac{dy}{dx}\) unless \(y\) is explicitly defined as \(f(x)\). Participants agree that various notations, including \(f'(x)\) and \(\frac{dy}{dx}\), are equivalent when \(y = f(x)\). The conversation emphasizes that understanding these notations is crucial for clarity in calculus. Overall, the thread provides reassurance that multiple derivative notations can coexist without confusion.
MacLaddy1
Messages
52
Reaction score
0
I am always getting mixed up on derivative notation, so I was just wondering if this below makes sense?

\(f(x) = 2x^\sqrt{2}\)

\(\frac{df(x)}{dx} = 2\frac{d}{dx}x^\sqrt{2}\)

The first should probably just be \(\frac{dy}{dx}\), but I was wondering if the other way would work as well.
 
Physics news on Phys.org
MacLaddy said:
I am always getting mixed up on derivative notation, so I was just wondering if this below makes sense?

\(f(x) = 2x^\sqrt{2}\)

\(\frac{df(x)}{dx} = 2\frac{d}{dx}x^\sqrt{2}\)

The first should probably just be \(\frac{dy}{dx}\), but I was wondering if the other way would work as well.

Actually, the way you have it is perfectly fine, and better than $dy/dx$, unless you've defined $y=f(x)$. Another equally valid notation is $f'(x)$.
 
MacLaddy said:
I am always getting mixed up on derivative notation, so I was just wondering if this below makes sense?

\(f(x) = 2x^\sqrt{2}\)

\(\frac{df(x)}{dx} = 2\frac{d}{dx}x^\sqrt{2}\)

The first should probably just be \(\frac{dy}{dx}\), but I was wondering if the other way would work as well.

Using the fact $y=f(x)$ Then you can write $\dfrac{df(x)}{dx}=\dfrac{dy}{dx}$

And yes you can do the above.
 
Thanks Ackbach and dwsmith. I've never seen my instructor do it that way, but it seemed to make sense.
 
If $y=f(x)$, the following are all equivalent:

$$Dy=Df(x)=\frac{d}{dx}\,y=\frac{d}{dx}\,f(x)=y'=f'(x)=\frac{dy}{dx}=\frac{df(x)}{dx}.$$

And I'm probably leaving out a few notations. Hope this doesn't confuse you, but this is the way it's developed.
 
Thread 'Problem with calculating projections of curl using rotation of contour'
Hello! I tried to calculate projections of curl using rotation of coordinate system but I encountered with following problem. Given: ##rot_xA=\frac{\partial A_z}{\partial y}-\frac{\partial A_y}{\partial z}=0## ##rot_yA=\frac{\partial A_x}{\partial z}-\frac{\partial A_z}{\partial x}=1## ##rot_zA=\frac{\partial A_y}{\partial x}-\frac{\partial A_x}{\partial y}=0## I rotated ##yz##-plane of this coordinate system by an angle ##45## degrees about ##x##-axis and used rotation matrix to...

Similar threads

  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 6 ·
Replies
6
Views
4K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 12 ·
Replies
12
Views
2K
  • · Replies 5 ·
Replies
5
Views
1K
Replies
4
Views
4K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 30 ·
2
Replies
30
Views
890