MHB Derivative Notation: Clarifying Confusion

Click For Summary
The discussion clarifies confusion around derivative notation, particularly for the function \(f(x) = 2x^\sqrt{2}\). It confirms that using \(\frac{df(x)}{dx}\) is acceptable and can be preferable to \(\frac{dy}{dx}\) unless \(y\) is explicitly defined as \(f(x)\). Participants agree that various notations, including \(f'(x)\) and \(\frac{dy}{dx}\), are equivalent when \(y = f(x)\). The conversation emphasizes that understanding these notations is crucial for clarity in calculus. Overall, the thread provides reassurance that multiple derivative notations can coexist without confusion.
MacLaddy1
Messages
52
Reaction score
0
I am always getting mixed up on derivative notation, so I was just wondering if this below makes sense?

\(f(x) = 2x^\sqrt{2}\)

\(\frac{df(x)}{dx} = 2\frac{d}{dx}x^\sqrt{2}\)

The first should probably just be \(\frac{dy}{dx}\), but I was wondering if the other way would work as well.
 
Physics news on Phys.org
MacLaddy said:
I am always getting mixed up on derivative notation, so I was just wondering if this below makes sense?

\(f(x) = 2x^\sqrt{2}\)

\(\frac{df(x)}{dx} = 2\frac{d}{dx}x^\sqrt{2}\)

The first should probably just be \(\frac{dy}{dx}\), but I was wondering if the other way would work as well.

Actually, the way you have it is perfectly fine, and better than $dy/dx$, unless you've defined $y=f(x)$. Another equally valid notation is $f'(x)$.
 
MacLaddy said:
I am always getting mixed up on derivative notation, so I was just wondering if this below makes sense?

\(f(x) = 2x^\sqrt{2}\)

\(\frac{df(x)}{dx} = 2\frac{d}{dx}x^\sqrt{2}\)

The first should probably just be \(\frac{dy}{dx}\), but I was wondering if the other way would work as well.

Using the fact $y=f(x)$ Then you can write $\dfrac{df(x)}{dx}=\dfrac{dy}{dx}$

And yes you can do the above.
 
Thanks Ackbach and dwsmith. I've never seen my instructor do it that way, but it seemed to make sense.
 
If $y=f(x)$, the following are all equivalent:

$$Dy=Df(x)=\frac{d}{dx}\,y=\frac{d}{dx}\,f(x)=y'=f'(x)=\frac{dy}{dx}=\frac{df(x)}{dx}.$$

And I'm probably leaving out a few notations. Hope this doesn't confuse you, but this is the way it's developed.
 

Similar threads

  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 6 ·
Replies
6
Views
4K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 12 ·
Replies
12
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 4 ·
Replies
4
Views
4K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 30 ·
2
Replies
30
Views
1K