- #1

- 680

- 332

- TL;DR Summary
- Given an expression for the energy of a particle’s energy in a Coulomb well, how to take the derivative (then set zero, then solve)

I’d appreciate some help with a mathematical block that I’m sure is trivial to most of you.

Given the expression (1):

Take the derivative of E with respect to a, set to zero and solve for a. Answer is shown at the bottom.

This is not homework; I’m following an account of the development of quantum physics. I’m out of practice with my calculus.

Now, I can see an a^2 term that should differentiate to 2a, and another a that should go to 1, but several attempts have not led to the answer. Would someone mind taking me through it?

Given the expression (1):

Take the derivative of E with respect to a, set to zero and solve for a. Answer is shown at the bottom.

This is not homework; I’m following an account of the development of quantum physics. I’m out of practice with my calculus.

Now, I can see an a^2 term that should differentiate to 2a, and another a that should go to 1, but several attempts have not led to the answer. Would someone mind taking me through it?