- #1
- 489
- 189
According to David Morin (link: https://books.google.com/books?id=Ni6CD7K2X4MC&pg=PA636), the time-derivative of the Lorentz factor is (##c=1##):
##\dot{\gamma} = \gamma^3 v \dot{v}##,
and the four-acceleration:
##\mathbf{A} = (\gamma^4 v \dot{v}, \gamma^4 v \dot{v} \mathbf{v} + \gamma^2 \mathbf{a})##.
Is that a mistake? I thought that it's:
##\dot{\gamma} = \gamma^3 (\mathbf{v} \cdot \dot{\mathbf{v}})##,
and
##\mathbf{A} = (\gamma^4 (\mathbf{v} \cdot \dot{\mathbf{v}}), \, \gamma^4 (\mathbf{v} \cdot \dot{\mathbf{v}}) \mathbf{v} + \gamma^2 \mathbf{a})##.
I could be wrong, but my understanding is that the ##v^2## in the radicand is really ##\mathbf{v} \cdot \mathbf{v}##, so that:
##\dfrac{d}{dt} \, (1 - v^2)^{-1/2} = \dfrac{d}{d(v^2)} \, (1 - v^2)^{-1/2} \, \dfrac{d}{dt} \, (\mathbf{v} \cdot \mathbf{v})##.
##\dot{\gamma} = \gamma^3 v \dot{v}##,
and the four-acceleration:
##\mathbf{A} = (\gamma^4 v \dot{v}, \gamma^4 v \dot{v} \mathbf{v} + \gamma^2 \mathbf{a})##.
Is that a mistake? I thought that it's:
##\dot{\gamma} = \gamma^3 (\mathbf{v} \cdot \dot{\mathbf{v}})##,
and
##\mathbf{A} = (\gamma^4 (\mathbf{v} \cdot \dot{\mathbf{v}}), \, \gamma^4 (\mathbf{v} \cdot \dot{\mathbf{v}}) \mathbf{v} + \gamma^2 \mathbf{a})##.
I could be wrong, but my understanding is that the ##v^2## in the radicand is really ##\mathbf{v} \cdot \mathbf{v}##, so that:
##\dfrac{d}{dt} \, (1 - v^2)^{-1/2} = \dfrac{d}{d(v^2)} \, (1 - v^2)^{-1/2} \, \dfrac{d}{dt} \, (\mathbf{v} \cdot \mathbf{v})##.