we have y=e^{x\ln \left( \ln x\right) }.
this can be written as y=e^{u} where u=x\ln \left( \ln x\right).
the chain rule is that \frac{dy}{dx}=\frac{dy}{du}\frac{du}{dx}.
\frac{dy}{du}=e^{u}. to find \frac{du}{dx}, note that u is the
product of x and \ln \left( \ln x\right).
\frac{du}{dx}=\left( \frac{d}{dx}x\right) \ln \left( \ln x\right) +x\frac{d<br />
}{dx}\ln \left( \ln x\right). \frac{d}{dx}x=1 and to find \frac{d}{dx}<br />
\ln \left( \ln x\right), it may be useful to write v=\ln w where w=\ln x<br />.
\frac{d}{dx}\ln \left( \ln x\right) =\frac{dv}{dx}=\frac{dv}{dw}\frac{dw}{dx<br />
}.
\frac{dv}{dw}=\frac{1}{w} and \frac{dw}{dx}=\frac{1}{x}. hence \frac{d<br />
}{dx}\ln \left( \ln x\right) =\frac{1}{w}\frac{1}{x}=\frac{1}{\ln x}\frac{1}{<br />
x}=\frac{1}{x\ln x}.
putting this back into the most recent expression for \frac{du}{dx}, we
get \frac{du}{dx}=1\cdot \ln \left( \ln x\right) +x\left( \frac{1}{x\ln x}<br />
\right) =\ln \left( \ln x\right) +\frac{1}{\ln x}.
putting this back into the most recent expression for \frac{dy}{dx}, we
get \frac{dy}{dx}=e^{u}\left( \ln \left( \ln x\right) +\frac{1}{\ln x}<br />
\right) =e^{x\ln \left( \ln x\right) }\left( \ln \left( \ln x\right) +\frac{1<br />
}{\ln x}\right).
since \left( \ln x\right) ^{x}=e^{x\ln \left( \ln x\right) }, we get <br />
\frac{dy}{dx}=e^{x\ln \left( \ln x\right) }\left( \ln \left( \ln x\right) +<br />
\frac{1}{\ln x}\right) =\left( \ln x\right) ^{x}\left( \ln \left( \ln<br />
x\right) +\frac{1}{\ln x}\right). either the middle or right side of this equation may be acceptable.