I Deriving e=mc^2, how is it possible?

rupcha
Messages
3
Reaction score
0
TL;DR Summary
How does rest energy "magically" emerge in SR?
I was recently very surprised when I had a looked up relativistic kinetic energy.

All sources gave the kinetic energy as the difference between total energy and rest energy, in some or other variant of the formula ##E_k=(\gamma−1)mc^2##.

I didn't really understand at first. It seemed overly "deep" and indirect to me, to start with total energy and introduce rest energy. Surely, it should be possible to just integrate the work done and come up with some relativistic but recognizable variant of ##E_k=\frac 1 2 mv^2##.

So I did the integration and, not surprisingly (but surprising to me then), the result was the very formula ##E_k=(\gamma−1)mc^2##.

But what really blew me away was that the rest energy ##mc^2## was being spat out "for free" as the integration constant.
I still don't quite understand how that's possible. There just seems to be too little information going into the integral for such a result to emerge.

I mean, the only ingredients going into the calculation are Newton's ##F=m\cdot a## and the Lorentz transformations. How the hell can math extract an equivalence of mass and energy from that? I would have expected that you had to add some deep insights into the nature of matter and possible conversions to come to a result like ##E_0=mc^2##.

Still absolutely blown away.

Grateful for anyone who can help me understand.

Edit: formulas got broken, trying to reenter (looked fine in preview)
 
Physics news on Phys.org
rupcha said:
I did the integration
How? Please show your work. And please use the PF LaTeX feature to make your equations readable.
 
rupcha said:
I am experimenting with a rather unconventional "reference frame"
Which is personal speculation and is off limits here. And of course explains why you're confusing yourself.

rupcha said:
Hoping of course, that I didn't simply make several mistakes
Your mistake was trying to experiment with personal speculation instead of doing standard SR math.

Thread closed.
 
  • Like
Likes topsquark
Thread 'Can this experiment break Lorentz symmetry?'
1. The Big Idea: According to Einstein’s relativity, all motion is relative. You can’t tell if you’re moving at a constant velocity without looking outside. But what if there is a universal “rest frame” (like the old idea of the “ether”)? This experiment tries to find out by looking for tiny, directional differences in how objects move inside a sealed box. 2. How It Works: The Two-Stage Process Imagine a perfectly isolated spacecraft (our lab) moving through space at some unknown speed V...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. The Relativator was sold by (as printed) Atomic Laboratories, Inc. 3086 Claremont Ave, Berkeley 5, California , which seems to be a division of Cenco Instruments (Central Scientific Company)... Source: https://www.physicsforums.com/insights/relativator-circular-slide-rule-simulated-with-desmos/ by @robphy
Does the speed of light change in a gravitational field depending on whether the direction of travel is parallel to the field, or perpendicular to the field? And is it the same in both directions at each orientation? This question could be answered experimentally to some degree of accuracy. Experiment design: Place two identical clocks A and B on the circumference of a wheel at opposite ends of the diameter of length L. The wheel is positioned upright, i.e., perpendicular to the ground...

Similar threads

Replies
14
Views
2K
Replies
7
Views
1K
Replies
8
Views
3K
Replies
124
Views
16K
Replies
16
Views
1K
Back
Top