Deriving Entropy Formula: Thermo Solution

  • Thread starter Thread starter olechka722
  • Start date Start date
  • Tags Tags
    Derivation Thermo
AI Thread Summary
The discussion centers on deriving an entropy formula from the equation dS = Cv/T dT + R/(V-b) dV. The initial query expresses confusion about integrating the two terms due to the presence of differentials. A participant clarifies that the terms can be integrated separately since they represent partial derivatives, with Cv being the heat capacity at constant volume. However, another contributor points out that simply recognizing the terms as partial derivatives is not enough; it is essential to consider that Cv may depend on both temperature and volume. The conversation highlights the complexities involved in integrating thermodynamic equations accurately.
olechka722
Messages
6
Reaction score
0
Hello,

I am trying to derive a formula for entropy. I have:

dS= Cv/T dT + R/(V-b) dV

and want to get:

S= Cv*ln(T) + R*ln(V-b) + constant.

Math rules seem to say i can't just integrate this up even though it looks obvious since i have two different d's on the right hand side. Maybe something using Maxwell relations? Not sure.

Thank you for any help!

olechka
 
Science news on Phys.org
The first term on the right side contains only a constant, a function of T, and dT. The second term contains only constants, a function of V, and dV. It's OK to integrate the terms separately in this case. You can verify this by differentiating the second expression.
 
You can just integrate it up I believe. The derivatives in this instance are actually partial derivates if I am not mistaken (the evidence is that Cv is the heat capacity at constant V...which implies that the second term is the change due to volume at constant T). So the total change in S is the sum of the integration of the two partial derivatives.
 
Renge Ishyo said:
You can just integrate it up I believe. The derivatives in this instance are actually partial derivates if I am not mistaken (the evidence is that Cv is the heat capacity at constant V...which implies that the second term is the change due to volume at constant T). So the total change in S is the sum of the integration of the two partial derivatives.

Not quite. It's true that the terms represent partial derivatives; that is, we're looking at

dS=\left(\frac{\partial S}{\partial T}\right)_V dT+\left(\frac{\partial S}{\partial V}\right)_T dV

However, this observation isn't sufficient to conclude that the integral of the right hand side equals the sum of the integrals of the individual terms. We must also require that C_V(T,V)=T\left(\frac{\partial S(T,V)}{\partial T}\right)_V, which is generally a function of both T and V, is idealized as a constant, as I stated above.
 
I need to calculate the amount of water condensed from a DX cooling coil per hour given the size of the expansion coil (the total condensing surface area), the incoming air temperature, the amount of air flow from the fan, the BTU capacity of the compressor and the incoming air humidity. There are lots of condenser calculators around but they all need the air flow and incoming and outgoing humidity and then give a total volume of condensed water but I need more than that. The size of the...
Thread 'Why work is PdV and not (P+dP)dV in an isothermal process?'
Let's say we have a cylinder of volume V1 with a frictionless movable piston and some gas trapped inside with pressure P1 and temperature T1. On top of the piston lay some small pebbles that add weight and essentially create the pressure P1. Also the system is inside a reservoir of water that keeps its temperature constant at T1. The system is in equilibrium at V1, P1, T1. Now let's say i put another very small pebble on top of the piston (0,00001kg) and after some seconds the system...
I was watching a Khan Academy video on entropy called: Reconciling thermodynamic and state definitions of entropy. So in the video it says: Let's say I have a container. And in that container, I have gas particles and they're bouncing around like gas particles tend to do, creating some pressure on the container of a certain volume. And let's say I have n particles. Now, each of these particles could be in x different states. Now, if each of them can be in x different states, how many total...
Back
Top