Deriving the Hamiltonian of a system given the Lagrangian

AI Thread Summary
The discussion focuses on deriving the Hamiltonian from a given Lagrangian, with the initial Hamiltonian incorrectly expressed as H = L - 6(q_1)^2. The correct approach involves finding the conjugate momenta using the relation p_i = δL/δ\dot{q_i} and then substituting these momenta back into the Hamiltonian equation. It is emphasized that the final Hamiltonian must only involve generalized coordinates and momenta, requiring a re-expression of the Lagrangian in terms of these variables. The participant acknowledges a mistake in their initial formulation and seeks clarification on correctly achieving the Hamiltonian representation. The conversation highlights the importance of properly transitioning from Lagrangian to Hamiltonian mechanics.
astroholly
Messages
1
Reaction score
0
Homework Statement
Derive the Hamiltonian, H([q][/1], [q][/2], [p][/1], [p][/1]), of a system that has the Lagrngian, L(q_1, q_2, \dot{q_1}, \dot{q_2}) = \dot{q_1}^2 + 0.5 \dot{q_2}^2 + 3q_1^2 + \dot{q_1} * \dot{q_2}
Relevant Equations
H(q_1, q_2, p_1, p_2) = sum over i (p_i \dot{q_i}) - L

L(q_1, q_2, \dot{q_1}, \dot{q_2}) = \dot{q_1}^2 + 0.5 \dot{q_2}^2 + 3q_1^2 + \dot{q_1} * \dot{q_2}
I have found the Hamiltonian to be ##H = L - 6 (q_1)^2## using the method below:

1. Find momenta using δL/δ\dot{q_i}
2. Apply Hamiltonian equation: H = sum over i (p_i \dot{q_i}) - L 3(q_1)^2. Simplifying result by combining terms
4. Comparing the given Lagrangian to the resulting Hamiltonian I found H =\dot{q_1}^2 + 0.5 \dot{q_2}^2 + \dot{q_1} * \dot{q_2} - 3q_1^2 = L - 6(q_1)^2 This is wrong because my Hamiltonian should be in terms of generalised coordinate and momentum only: H(q_1, q_2, p_1, p_2). What am I neglecting?
 

Attachments

  • 2021.jpeg
    2021.jpeg
    57.8 KB · Views: 119
Last edited:
Physics news on Phys.org
From the equations for ##p_i## you could find ##\dot{q_i}##. Substituting these everywhere, you get the expression in terms of ##q_i## and ##p_i## only.
 
  • Like
Likes vanhees71 and PhDeezNutz
^^^ That

The Hamiltonian is supposed to be a function of just the ##q_i##'s and ##p_i##'s so once you find the conjugate momenta via

##p_i = \frac{\partial L}{\partial \dot{q}_i}## you need to re-arange and solve for each of the ##\dot{q}_i##'s and then plug it into

##H = \sum_{i=1}^{2} p_i \dot{q}_i - L##

You need to re-express ##L## in terms of the phase space variables ##q_i##'s and ##p_i##'s as well....after all that is the "second part of the hamiltonian"
 
  • Like
Likes vanhees71 and Hill
Thread 'Help with Time-Independent Perturbation Theory "Good" States Proof'
(Disclaimer: this is not a HW question. I am self-studying, and this felt like the type of question I've seen in this forum. If there is somewhere better for me to share this doubt, please let me know and I'll transfer it right away.) I am currently reviewing Chapter 7 of Introduction to QM by Griffiths. I have been stuck for an hour or so trying to understand the last paragraph of this proof (pls check the attached file). It claims that we can express Ψ_{γ}(0) as a linear combination of...
Back
Top