Deriving the Michelson Interferometer Equation: d_m = (m[lambda])/2

NovaKing
Messages
4
Reaction score
0
does anyone know how to derive this equation regarding the Michelson interferometer:

d_m = (m[lambda])/2

where d_m is the physical distance of a micrometer division, m is the number of fringes that crosses a screen given some d_m and lambda is the wavelength of the laser used to create the interference pattern.

I understand that the path difference divided by the wavelength is responsible for the number of fringes that pass by a certain mark, but I don't understand where the 2 comes from. Can someone help me please?
 
Physics news on Phys.org
oh hehe never mind.


as it turns out because the path difference divided by the wavelength is number of fringes that pass I can set up a diagram to evaluate the problem.

Quite simply, the change in distance for the interferometer which has an arm that changes length is just 2L - 2(L-d_m) which gets 2d_m as the change in distance. Thus:

2d_m = m[lambda]

or

d_m = (m[lambda])/2


how silly of me
 
Thread 'Can this experiment break Lorentz symmetry?'
1. The Big Idea: According to Einstein’s relativity, all motion is relative. You can’t tell if you’re moving at a constant velocity without looking outside. But what if there is a universal “rest frame” (like the old idea of the “ether”)? This experiment tries to find out by looking for tiny, directional differences in how objects move inside a sealed box. 2. How It Works: The Two-Stage Process Imagine a perfectly isolated spacecraft (our lab) moving through space at some unknown speed V...
Does the speed of light change in a gravitational field depending on whether the direction of travel is parallel to the field, or perpendicular to the field? And is it the same in both directions at each orientation? This question could be answered experimentally to some degree of accuracy. Experiment design: Place two identical clocks A and B on the circumference of a wheel at opposite ends of the diameter of length L. The wheel is positioned upright, i.e., perpendicular to the ground...
According to the General Theory of Relativity, time does not pass on a black hole, which means that processes they don't work either. As the object becomes heavier, the speed of matter falling on it for an observer on Earth will first increase, and then slow down, due to the effect of time dilation. And then it will stop altogether. As a result, we will not get a black hole, since the critical mass will not be reached. Although the object will continue to attract matter, it will not be a...
Back
Top