MHB Determine its image point after the transformation

Azurin
Messages
3
Reaction score
0
The graph of y=x^2 was transformed to the graph of y=-3(x+5)-2. The point (-3, 9) lies on the graph of y=x^2. Determine its image point after the transformations.
 
Mathematics news on Phys.org
Azurin said:
Azurin said:
The graph of y=x^2 was transformed to the graph of y=-3(x+5)-2. The point (-3, 9) lies on the graph of y=x^2. Determine its image point after the transformations.
Skeeter is assuming the function is [math]y= -3(x+5)^2- 2[/math], not [math]y= -3(x+5) 2[/math].
Is that correct?

If so, I would observe that x has 5 added to it and that y (everything done after the squaring) is multiplied by -3 then had 2 subtracted. that is, (x, y) is transformed to (x+ 5, -3y- 2). In particular (-3, 9) is transformed to (-3+ 5, -3(9)- 2)= (2, -29).

Check- yes, if x= 2, [math]y= -3(-2+ 5)^2- 2= -3(3)^2- 2= -27- 2= -29[/math].
 
Last edited:
You wrote
The graph of y=x^2 was transformed to the graph of y=-3(x+5)-2.

Did you mean "y= -3(x+ 5)^2- 2" or just "y= -3(x+ 5)^2"? In other words, did you drop the "^" or did you type "-" instead of "^"?
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.

Similar threads

Back
Top