MHB Determine its image point after the transformation

Click For Summary
The transformation of the graph from y=x^2 to y=-3(x+5)-2 involves a misunderstanding regarding the function's notation. The correct interpretation is y=-3(x+5)^2-2, which indicates a vertical stretch and a downward shift. The point (-3, 9) on the original graph transforms to (2, -29) after applying the mapping rule. The calculations confirm that the transformed coordinates are accurate based on the transformation rules. Clarification on the notation is essential to avoid confusion in the transformation process.
Azurin
Messages
3
Reaction score
0
The graph of y=x^2 was transformed to the graph of y=-3(x+5)-2. The point (-3, 9) lies on the graph of y=x^2. Determine its image point after the transformations.
 
Mathematics news on Phys.org
Azurin said:
Azurin said:
The graph of y=x^2 was transformed to the graph of y=-3(x+5)-2. The point (-3, 9) lies on the graph of y=x^2. Determine its image point after the transformations.
Skeeter is assuming the function is [math]y= -3(x+5)^2- 2[/math], not [math]y= -3(x+5) 2[/math].
Is that correct?

If so, I would observe that x has 5 added to it and that y (everything done after the squaring) is multiplied by -3 then had 2 subtracted. that is, (x, y) is transformed to (x+ 5, -3y- 2). In particular (-3, 9) is transformed to (-3+ 5, -3(9)- 2)= (2, -29).

Check- yes, if x= 2, [math]y= -3(-2+ 5)^2- 2= -3(3)^2- 2= -27- 2= -29[/math].
 
Last edited:
You wrote
The graph of y=x^2 was transformed to the graph of y=-3(x+5)-2.

Did you mean "y= -3(x+ 5)^2- 2" or just "y= -3(x+ 5)^2"? In other words, did you drop the "^" or did you type "-" instead of "^"?
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K