MHB Determine its image point after the transformation

AI Thread Summary
The transformation of the graph from y=x^2 to y=-3(x+5)-2 involves a misunderstanding regarding the function's notation. The correct interpretation is y=-3(x+5)^2-2, which indicates a vertical stretch and a downward shift. The point (-3, 9) on the original graph transforms to (2, -29) after applying the mapping rule. The calculations confirm that the transformed coordinates are accurate based on the transformation rules. Clarification on the notation is essential to avoid confusion in the transformation process.
Azurin
Messages
3
Reaction score
0
The graph of y=x^2 was transformed to the graph of y=-3(x+5)-2. The point (-3, 9) lies on the graph of y=x^2. Determine its image point after the transformations.
 
Mathematics news on Phys.org
Azurin said:
Azurin said:
The graph of y=x^2 was transformed to the graph of y=-3(x+5)-2. The point (-3, 9) lies on the graph of y=x^2. Determine its image point after the transformations.
Skeeter is assuming the function is [math]y= -3(x+5)^2- 2[/math], not [math]y= -3(x+5) 2[/math].
Is that correct?

If so, I would observe that x has 5 added to it and that y (everything done after the squaring) is multiplied by -3 then had 2 subtracted. that is, (x, y) is transformed to (x+ 5, -3y- 2). In particular (-3, 9) is transformed to (-3+ 5, -3(9)- 2)= (2, -29).

Check- yes, if x= 2, [math]y= -3(-2+ 5)^2- 2= -3(3)^2- 2= -27- 2= -29[/math].
 
Last edited:
You wrote
The graph of y=x^2 was transformed to the graph of y=-3(x+5)-2.

Did you mean "y= -3(x+ 5)^2- 2" or just "y= -3(x+ 5)^2"? In other words, did you drop the "^" or did you type "-" instead of "^"?
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...

Similar threads

Back
Top