MHB Determine its image point after the transformation

Click For Summary
The transformation of the graph from y=x^2 to y=-3(x+5)-2 involves a misunderstanding regarding the function's notation. The correct interpretation is y=-3(x+5)^2-2, which indicates a vertical stretch and a downward shift. The point (-3, 9) on the original graph transforms to (2, -29) after applying the mapping rule. The calculations confirm that the transformed coordinates are accurate based on the transformation rules. Clarification on the notation is essential to avoid confusion in the transformation process.
Azurin
Messages
3
Reaction score
0
The graph of y=x^2 was transformed to the graph of y=-3(x+5)-2. The point (-3, 9) lies on the graph of y=x^2. Determine its image point after the transformations.
 
Mathematics news on Phys.org
Azurin said:
Azurin said:
The graph of y=x^2 was transformed to the graph of y=-3(x+5)-2. The point (-3, 9) lies on the graph of y=x^2. Determine its image point after the transformations.
Skeeter is assuming the function is [math]y= -3(x+5)^2- 2[/math], not [math]y= -3(x+5) 2[/math].
Is that correct?

If so, I would observe that x has 5 added to it and that y (everything done after the squaring) is multiplied by -3 then had 2 subtracted. that is, (x, y) is transformed to (x+ 5, -3y- 2). In particular (-3, 9) is transformed to (-3+ 5, -3(9)- 2)= (2, -29).

Check- yes, if x= 2, [math]y= -3(-2+ 5)^2- 2= -3(3)^2- 2= -27- 2= -29[/math].
 
Last edited:
You wrote
The graph of y=x^2 was transformed to the graph of y=-3(x+5)-2.

Did you mean "y= -3(x+ 5)^2- 2" or just "y= -3(x+ 5)^2"? In other words, did you drop the "^" or did you type "-" instead of "^"?
 
Thread 'Erroneously  finding discrepancy in transpose rule'
Obviously, there is something elementary I am missing here. To form the transpose of a matrix, one exchanges rows and columns, so the transpose of a scalar, considered as (or isomorphic to) a one-entry matrix, should stay the same, including if the scalar is a complex number. On the other hand, in the isomorphism between the complex plane and the real plane, a complex number a+bi corresponds to a matrix in the real plane; taking the transpose we get which then corresponds to a-bi...

Similar threads

Replies
2
Views
2K
Replies
8
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
6
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K