MHB Determine the largest number k

  • Thread starter Thread starter anemone
  • Start date Start date
AI Thread Summary
The discussion focuses on determining the largest number k for the system defined by the equations a^2 + b^2 = 1 and |a^3 - b^3| + |a - b| = k^3. Participants highlight the use of the AM-GM inequality as a method for solving the problem. Albert is acknowledged for providing correct solutions and is encouraged to further explore the AM-GM approach. The conversation emphasizes collaboration and appreciation for contributions. The participants are engaged in a mathematical exploration of inequalities and solutions.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Determine the largest number $k$ such that system $a^2+b^2=1$, $|a^3-b^3|+|a-b|=k^3$ has a solution.
 
Mathematics news on Phys.org
anemone said:
Determine the largest number $k$ such that system $a^2+b^2=1$, $|a^3-b^3|+|a-b|=k^3---(1)$ has a solution.
from (1) we know that :$k\geq 0$
if $a=b$ then $k=0$
if $a>b$, we have :
$(a-b)(ab+2)=k^3=f(a,b)---(*)$
using lagrange-method:
we want to find:
$(a-b)(ab+2)+L(a^2+b^2-1)=max(f(a,b))$
we get $L=\dfrac {b-a}{2}=\dfrac {4ab+3}{2(b-a)}$
$\therefore ab=\dfrac {-1}{3}---(2)$
$a^2+b^2=1---(3)$
from (2)(3)$a-b=\sqrt{\dfrac {5}{3}}---(4)$
put (2)(4) to (*) and we get:
$k^3=\dfrac{5}{3}\times\sqrt{\dfrac{5}{3}}$
$k=\sqrt{\dfrac{5}{3}}$
if $b>a$
because of symmetry it will be the same
 
Last edited:
Albert said:
from (1) we know that :$k\geq 0$
if $a=b$ then $k=0$
if $a>b$, we have :
$(a-b)(ab+2)=k^3=f(a,b)---(*)$
using lagrange-method:
we want to find:
$(a-b)(ab+2)+L(a^2+b^2-1)=max(f(a,b))$
we get $L=\dfrac {b-a}{2}=\dfrac {4ab+3}{2(b-a)}$
$\therefore ab=\dfrac {-1}{3}---(2)$
$a^2+b^2=1---(3)$
from (2)(3)$a-b=\sqrt{\dfrac {5}{3}}---(4)$
put (2)(4) to (*) and we get:
$k^3=\dfrac{5}{3}\times\sqrt{\dfrac{5}{3}}$
$k=\sqrt{\dfrac{5}{3}}$
if $b>a$
because of symmetry it will be the same

Thanks for participating and well done, Albert! Your answer is correct! Something tells me you really like to use the AM-GM to solve for problem such as this one and for your information, the solution that I have used the AM-GM to solve it as well...do you think you want to give AM-GM a try? Hehehe...:o
 
anemone said:
Thanks for participating and well done, Albert! Your answer is correct! Something tells me you really like to use the AM-GM to solve for problem such as this one and for your information, the solution that I have used the AM-GM to solve it as well...do you think you want to give AM-GM a try? Hehehe...:o
use AM-GM
$(a-b)^2=1-2ab$
$k^3=(a-b)(ab+2)=\sqrt {1-2ab}\times (ab+2)---(*)\leq\dfrac{(1-2ab)+(ab+2)^2}{2}$
$\therefore 1-2ab=ab+2,$ or $ab=\dfrac {-1}{3}$
put $ab=\dfrac {-1}{3} $to (*)we get:
$k=\sqrt {\dfrac {5}{3}}$
 
Albert said:
use AM-GM
$(a-b)^2=1-2ab$
$k^3=(a-b)(ab+2)=\sqrt {1-2ab}\times (ab+2)---(*)\leq\dfrac{(1-2ab)+(ab+2)^2}{2}$
$\therefore 1-2ab=ab+2,$ or $ab=\dfrac {-1}{3}$
put $ab=\dfrac {-1}{3} $to (*)we get:
$k=\sqrt {\dfrac {5}{3}}$

That's is it!(Yes) Thanks Albert for your second solution! :)
 
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Back
Top