Determine the Thevenin equivalent circuit

Click For Summary
SUMMARY

The discussion focuses on determining the Thevenin equivalent circuit for a given electrical circuit using a test current source. The key equations derived include the open-circuit voltage \( V_{oc} \) and the Thevenin equivalent resistance \( R_{eq} \). The open-circuit voltage is expressed as \( V_{oc} = \frac{R_2(\alpha + R_1)}{R_1 + R_2 + \alpha} I_0 \), while the equivalent resistance is given by \( R_{eq} = \frac{R_2(\alpha + R_1)}{R_1 + R_2 + \alpha} \). The discussion also raises questions about current flow through the dependent voltage source in the second subcircuit, specifically how current behaves according to Kirchhoff’s current law.

PREREQUISITES
  • Understanding of Thevenin's theorem
  • Familiarity with Kirchhoff's current law (KCL)
  • Knowledge of dependent sources in electrical circuits
  • Proficiency in solving simultaneous equations
NEXT STEPS
  • Study Thevenin's theorem applications in circuit analysis
  • Learn about dependent sources and their behavior in circuits
  • Explore Kirchhoff’s laws in more complex circuit scenarios
  • Practice solving simultaneous equations in electrical engineering problems
USEFUL FOR

Electrical engineering students, circuit designers, and professionals involved in circuit analysis and design will benefit from this discussion, particularly those working with Thevenin equivalents and dependent sources.

zenterix
Messages
774
Reaction score
84
Homework Statement
Determine the Thevenin equivalent of the circuit below.
Relevant Equations
##V=iR##
Here is the circuit that we need to find the Thevenin equivalent of
1707188885643.png

I am really not confident that the attempted solution below is correct.

Let's put a test current source between the terminals we're interested in
1707188942710.png


First let's compute the open circuit voltage. We set the newly introduced test current source to zero and compute the voltage between the terminals.

1707189010442.png

We have three unknowns ##e, i,## and ##i_2##.

We have three equations

$$I_0=i+i_2\tag{1}$$

$$i_2=\frac{e+\alpha i}{R_2}\tag{2}$$

$$i=\frac{e}{R_1}\tag{3}$$

Sub (3) into (2) to obtain

$$i_2=\frac{e(R_1+\alpha R_2)}{R_1R_2}\tag{4}$$

Now sub (2) and (4) into (1) and solve for ##e## to obtain

$$e=\frac{R_1R_2I_0}{R_1+R_2+\alpha}\tag{5}$$

Then

$$i=\frac{e}{R_1}=\frac{R_2I_0}{R_1+R_2+\alpha}\tag{6}$$

The open-circuit voltage is ##e+\alpha i## and this is

$$V_{oc}=e+\alpha i=\frac{R_2(\alpha+R_1)}{R_1+R_2+\alpha}I_0\tag{7}$$

Next, we set current source ##I_0## to zero and we solve for the voltage on the terminals we're interested in.

1707189332394.png


We have the same three unknowns as before, and the equations turn out to be the same as before except that instead of ##I_0## we have ##I## in the equations.

Thus, for this subcircuit we have

$$V_b=e+\alpha i=\frac{R_2(\alpha+R_1)}{R_1+R_2+\alpha}I\tag{8}$$

The Thevenin equivalent resistance is

$$R_{eq}=\frac{R_2(\alpha+R_1)}{R_1+R_2+\alpha}\tag{9}$$

By superposition, the voltage at the terminals of the original circuit is

$$V=V_{oc}+V_b=\frac{R_2(\alpha+R_1)}{R_1+R_2+\alpha}(I+I_0)\tag{10}$$

The Thevenin equivalent circuit is

1707189712443.png


Indeed, the voltage at the terminals of this circuit is

$$V=IR_{eq}+V_{oc}=V_b+V_{oc}=\frac{R_2(\alpha+R_1)}{R_1+R_2+\alpha}(I+I_0)\tag{11}$$

One of my questions is about the second subcircuit.

How does current flow in this subcircuit?

It seems that both ##i## and ##i_2## are positive.

$$i=\frac{R_2}{R_1+R_2+\alpha}I\tag{12}$$

$$i_2=\frac{R_1+\alpha}{R_1+R_2+\alpha}I\tag{13}$$

It seems that current is flowing from positive to negative terminals of the voltage source.

In fact, we seem to have

$$e+\alpha i=\frac{R_1R_2+\alpha R_2}{R_1+R_2+\alpha}\tag{14}$$

$$e=\frac{R_1R_2}{R_1+R_2+\alpha}\tag{15}$$

Thus, ##e+\alpha i>e##.

But then current would need to flow from the ##e## node to the ##e+\alpha i## node, right?

In summary, how does current flow through the dependent voltage source in the second sub-circuit above?
 
Last edited:
Physics news on Phys.org
After posting, I noticed an algebra mistake. Turns out it only affected the denominators in the expressions. It is now corrected above, and my questions are the same.
 
Last edited:
zenterix said:
In summary, how does current flow through the dependent voltage source in the second sub-circuit above?
There is a node between only two elements - the dependent voltage source and the resistor R1.
What does Kirchhoff’s current law state?
 

Similar threads

Replies
6
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 23 ·
Replies
23
Views
2K
  • · Replies 16 ·
Replies
16
Views
2K
  • · Replies 13 ·
Replies
13
Views
1K
Replies
3
Views
855
Replies
1
Views
1K
  • · Replies 7 ·
Replies
7
Views
4K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
2
Views
2K