hitemup
- 81
- 2
Homework Statement
Determine the total electrostatic potential energy of a nonconducting sphere of radius r_0 carrying a total charge Q distributed uniformly thorughout its volume.
Homework Equations
U = qV
The Attempt at a Solution
\rho = \frac{Q}{4/3\pi r_0^3} = \frac{dq}{4\pi r^2dr}
Electric field inside a nonconductor sphere
V = \frac{kQ}{2r_0}(3-\frac{r^2}{r_0^2})
dU = Vdq
= \frac{kQ}{2r_0} (3 - \frac{r^2}{r_0^2}) \rho4\pi r^2 dr
= \frac{2kQ\pi\rho}{r_0}(3r^2 -\frac{r^4}{r_0^2} )dr
After integrating it over [from zero to r_0], I end up with the following result
\frac{3Q^2}{10\pi r_0 \epsilon_0}
But the correct answer according to the textbook is this.
\frac{3Q^2}{20\pi r_0 \epsilon_0}
It's almost the same result but missing a factor of two in the denominator. Is it because of the potential equation? Solutions manual uses potential at the surface, but in my answer I use potential inside a nonconductor. That may be the reason of 1/2. (kq/r_0 vs kq/2r_0* (3 - r^2/r_0^2))