- #1

- 115

- 0

## Homework Statement

Evaluate [itex] \iint\limits_S \vec{A} . \vec{n} ds[/itex] over the plane [itex] x^{2}+y^{2}=16[/itex], where [itex]\vec{A}=z\vec{i}+x\vec{j}-3y^{2}\vec{k} [/itex] and S is a part from the plane and R was projected over xz-plane.

## Homework Equations

Surface Integral and Double Integration.

## The Attempt at a Solution

This is an answered problem, but I didn't get how to determine the integration limits

I understand that I have to integrate with respect to x and z due the fact the region is projected over "xz-plane", and I've to get the limits from the plane equation.

The limits integration in the solution are [itex] \int_0^5 \int_0^4 dz dx [/itex]