Determining electric field using gauss's law--different distributions

AI Thread Summary
Gauss's law can be applied effectively when there is symmetry in the charge distribution. The discussion highlights that distributions A and D lack the necessary symmetry for using Gauss's law, while B and C are more suitable. The key to applying Gauss's law is to choose a surface where the electric flux remains constant. Participants suggest that distribution A could be analyzed as a line of charge with an imaginary cylinder, but the asymmetry complicates its application. Overall, understanding the symmetry of charge distributions is crucial for determining the electric field using Gauss's law.
Helenah
Messages
3
Reaction score
0
Homework Statement
We are supposed to determine which (if any) of the distributions will need to/could use Gauss's law to determine the electric field
Relevant Equations
flux = Q/electric constant = EA
Screen Shot 2021-03-18 at 11.41.03 PM.png

These are the 4 distributions shown, and I have to determine which two distributions (or none at all) can use Gauss's law to determine the electric field.

So electric flux = EA = Q/electric constant.

Since all of them have charges, I could do something like Q/(A*electric constant) to get the electric field—that's where I'm confused, because I think I could actually use Gauss's law on all four of them. The only other way I can think of is that Gauss's law is applied to surfaces so that probably excludes lines (A) and disks (D), which do not really have surface area.
Am I right in thinking so? Is there a better / correct way to get to the answer?
 
Last edited:
Physics news on Phys.org
You perhaps need to think about how you would practically use Gauss's law to determine the electric field.

Hint: think about symmetry.
 
@PeroK
Hmm. Distribution A could potentially be viewed as line of charge + imaginary cylinder to get some electric field, but the charges aren't symmetric and hence will not be able to use gauss's law (?).
I'm not sure where else it's not symmetric though.
 
Helenah said:
@PeroK
Hmm. Distribution A could potentially be viewed as line of charge + imaginary cylinder to get some electric field, but the charges aren't symmetric and hence will not be able to use gauss's law (?).
I'm not sure where else it's not symmetric though.
The trick to use Gauss's law effectively is to have a surface across which the electric flux must be constant.

Your intuition is right that A and D are problematic and B and C are better. Can you explain more clearly how you do things in cases B and C?
 
Thread 'Minimum mass of a block'
Here we know that if block B is going to move up or just be at the verge of moving up ##Mg \sin \theta ## will act downwards and maximum static friction will act downwards ## \mu Mg \cos \theta ## Now what im confused by is how will we know " how quickly" block B reaches its maximum static friction value without any numbers, the suggested solution says that when block A is at its maximum extension, then block B will start to move up but with a certain set of values couldn't block A reach...
TL;DR Summary: Find Electric field due to charges between 2 parallel infinite planes using Gauss law at any point Here's the diagram. We have a uniform p (rho) density of charges between 2 infinite planes in the cartesian coordinates system. I used a cube of thickness a that spans from z=-a/2 to z=a/2 as a Gaussian surface, each side of the cube has area A. I know that the field depends only on z since there is translational invariance in x and y directions because the planes are...
Thread 'Calculation of Tensile Forces in Piston-Type Water-Lifting Devices at Elevated Locations'
Figure 1 Overall Structure Diagram Figure 2: Top view of the piston when it is cylindrical A circular opening is created at a height of 5 meters above the water surface. Inside this opening is a sleeve-type piston with a cross-sectional area of 1 square meter. The piston is pulled to the right at a constant speed. The pulling force is(Figure 2): F = ρshg = 1000 × 1 × 5 × 10 = 50,000 N. Figure 3: Modifying the structure to incorporate a fixed internal piston When I modify the piston...
Back
Top