I have the following sequence(adsbygoogle = window.adsbygoogle || []).push({});

[tex]

\begin{array}{l}

a_n = ( - 1)^n \left( {\frac{n}{{n + 1}}} \right) \\

\\

\mathop {\lim }\limits_{n \to \infty } \left[ {( - 1)^n \left( {\frac{n}{{n + 1}}} \right)} \right] \\

\end{array}

[/tex]

Direct substitution yields [tex]

( - 1)^\infty \left( {\frac{\infty }{\infty }} \right)

[/tex]

I tried manipulating it into a form in which I could apply L'Hopital's Rule.

[tex]

\displaylines{

{\rm Let y} = \mathop {\lim }\limits_{n \to \infty } \left[ {( - 1)^n \left( {\frac{n}{{n + 1}}} \right)} \right] \cr

\cr

\ln y = \mathop {\lim }\limits_{n \to \infty } \ln \left[ {( - 1)^n \left( {\frac{n}{{n + 1}}} \right)} \right] \cr

\cr

= \mathop {\lim }\limits_{n \to \infty } \left[ {\ln ( - 1)^n + \ln (n) - \ln (n + 1)} \right] \cr

\cr

= \mathop {\lim }\limits_{n \to \infty } \left[ {n\ln ( - 1) + \ln (n) - \ln (n + 1)} \right] \cr

\cr

\ln ( - 1) = undefined \cr}

[/tex]

The answer is below. How did the book arrive at that answer? How did they go through and calculate the limit? Solutions manuals are so wonderfully detailed :)

http://img70.imageshack.us/img70/7812/answer5ck.jpg [Broken]

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Homework Help: Determining the limit of a sequence

**Physics Forums | Science Articles, Homework Help, Discussion**