Diagonalizing Spin Hamiltonian

  • Thread starter Thread starter antibrane
  • Start date Start date
  • Tags Tags
    Hamiltonian Spin
antibrane
Messages
37
Reaction score
0
How would one find the eigenstates/values for the following Hamiltonian?

<br /> H=A S_z + B S_x<br />

where A,B are just constants. Any help is appreciated. Thanks.
 
Physics news on Phys.org
I don't know how to use latex that well, so I'll try to give you the general idea as to how I got the solution.
The matrix for which we need to find the eigenvalues is
[A B
B -A]
the eigenvalues come out to be sqrt(A^2 + B^2), with both negative and positive values of the square-root.
Next, use the substitution cos(theta) = A/[sqrt(A^2 + B^2) and sin(theta) = B/sqrt(A^2 + B^2), while solving the equations for the components of the eigenvector for either value of the eigenvalue. You will have the second component of the eigenvector related to the first component multiplied by the tan of half the angle theta, with plus/minus sign for the corresponding sign of the eigenvalue.
 
Thanks, I think I've figured it out now.
 
Not an expert in QM. AFAIK, Schrödinger's equation is quite different from the classical wave equation. The former is an equation for the dynamics of the state of a (quantum?) system, the latter is an equation for the dynamics of a (classical) degree of freedom. As a matter of fact, Schrödinger's equation is first order in time derivatives, while the classical wave equation is second order. But, AFAIK, Schrödinger's equation is a wave equation; only its interpretation makes it non-classical...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
Is it possible, and fruitful, to use certain conceptual and technical tools from effective field theory (coarse-graining/integrating-out, power-counting, matching, RG) to think about the relationship between the fundamental (quantum) and the emergent (classical), both to account for the quasi-autonomy of the classical level and to quantify residual quantum corrections? By “emergent,” I mean the following: after integrating out fast/irrelevant quantum degrees of freedom (high-energy modes...
Back
Top