veronik
- 4
- 0
[SOLVED] Diff. eqn + erf (error function)
I’m stacked with this problem for many days, someone can help me pleeeeease:
(a) f \left( x \right) =\int _{-\infty }^{{x}^{2}/2}\!{e^{x-1/2\,{t}^{2<br /> }}}{dt}
I foud the solution: f \left( x \right) =1/2\,{e^{x}}\sqrt {2\pi } \left( 1+{\it <br /> erf} \left( 1/4\,{x}^{2}\sqrt {2} \right) \right)
(b) Find the solution of the dfferential equatio:
{\frac {d^{2}}{d{x}^{2}}}y \left( x \right) =f \left( x \right) with y(0)=0 and dy(0)/dx = 0
In the form : y \left( x \right) =\int _{0}^{x}\! \left( x-t \right) f \left( t<br /> \right) {dt}
Veronica
I’m stacked with this problem for many days, someone can help me pleeeeease:
(a) f \left( x \right) =\int _{-\infty }^{{x}^{2}/2}\!{e^{x-1/2\,{t}^{2<br /> }}}{dt}
I foud the solution: f \left( x \right) =1/2\,{e^{x}}\sqrt {2\pi } \left( 1+{\it <br /> erf} \left( 1/4\,{x}^{2}\sqrt {2} \right) \right)
(b) Find the solution of the dfferential equatio:
{\frac {d^{2}}{d{x}^{2}}}y \left( x \right) =f \left( x \right) with y(0)=0 and dy(0)/dx = 0
In the form : y \left( x \right) =\int _{0}^{x}\! \left( x-t \right) f \left( t<br /> \right) {dt}
Veronica