Let's make an axample: you can introduce coordinates (t, x), (t', x'), (t'', x''), ... on spacetime. You are labelling the same event on spacetime (a supernova explodes) with different coordinates. But we all agree that it happens "here and then", at a specific point To be more precise, the event itself defines this point P, the "here and then". In an empty spacetime the "here and then" cannot be defined reasonably b/c there is nothing "at" a specific point.
So if different observers introduce different frames of reference (t, x), (t', x'), (t'', x''), ... they do not agree "where w.r.t. these reference frames" the supernova explodes, but they agree on the fact that the explosion defines a point P on spacetime uniquely (observer-independently). In addition once they have two different events these events define two points P and Q. Again they do not agree on the coordinates, but they agree on "distance" which is calculated using the line element ds² = gabdxadxb.
What GR says is that the essential physics is encoded via invariants like ds². They do not change under coordinate changes. The "same" spacetime geometry means that you have one "geometry" which is described via one metric tensor "g" which has different coordinate representations gab, g'ab, g''ab, ... with different values. But that any invariant derived from these different representations has the same value for all representations.
The curvature is a complicated object; the curvature tensor Rabcd depends on the choice of coordinates, but different scalars derived from it like the curvature scalar R and the Kretschmann scalar K are indeed invariants.