- #1

"Don't panic!"

- 601

- 8

Also, he then goes on to say that this suggests that we can define another kind of derivative operator that allows us to categorise the rates of change in tensors as they change under such diffeomorphisms. He says that for that "a single discrete diffeomorphism is insufficient ; we require a one-parameter family of diffeomorphisms, [itex]\phi_{t}[/itex]", parametrised by some real parameter, [itex]t\in\mathbb{R}[/itex]. Is this because one discrete diffeomorphism would only enable us to evaluate the derivative of a tensor for only a few points (on an individual basis), analogously to when one first defines the derivative of a function at a point [itex]x_{0}\in\mathbb{R}[/itex] as $$ \lim_{h\rightarrow 0}\frac{f(x_{0}+h)-f(x_{0})}{h}$$? To generalise this notion we note that if [itex]f[/itex] is differentiable at every point in some region then we can define a function [itex]f' : \mathbb{R}\rightarrow\mathbb{R}[/itex] that maps each point in that region to the derivative of [itex]f[/itex] at that point, i.e. [itex]x\mapsto f'(x)[/itex]. We define this function such that

$$f'(x)=\lim_{h\rightarrow 0}\frac{f(x+h)-f(x)}{h}$$

Given this we can then define an operator [itex]\frac{d}{dx}\left(\right)[/itex]; this requires a set of differentiable functions such that [itex]\frac{d}{dx}\left(\right)[/itex] maps each differentiable function [itex]f[/itex] to its corresponding derivative function [itex]f'[/itex], i.e. $$\frac{d}{dx}\left(f\right)=f'$$ Is this the point, that the domain of a derivative operator is the set of differentiable functions and not the set of real numbers and thus, going back to differential geometry, in order to define a derivative operator using diffeomorphisms we require a family of diffeomorphisms - one discrete diffeomorphism is not enough?!

Finally, when he introduces this family of diffeomorphisms he says that "if we consider what happens to the point [itex]p\in M[/itex] under the entire family [itex]\phi_{t}[/itex], it is clear that it describes a curve in [itex]M[/itex]". Is this because, if we consider an individual diffeomorphism (for fixed [itex]t[/itex]) then each point [itex]p[/itex] in the domain of the diffeomorphism is mapped to a single discrete point. However if we fix the point [itex]p[/itex] and allow the diffeomorphism to vary (i.e. we vary the values of [itex]t[/itex]) then this describes a curve in [itex]M[/itex] as [itex]p[/itex] will be mapped to different points in a continuous fashion as [itex]\phi_{t}[/itex] varies?

Sorry for the long-windedness of this post, I will really appreciate any feedback though!