I Difference between proper time and coordinate time

Click For Summary
Proper time is the time measured by a clock along a specific worldline, while coordinate time is a reference time set by a chosen coordinate system, which can vary based on the observer's frame of reference. Proper time is invariant for a given worldline, meaning it does not depend on the coordinate system used, but it is not unique between two events unless those events occur along the same worldline. There is no proper time defined between two events that are not connected by a worldline; instead, proper time is only meaningful for a clock that travels between those events. In contrast, coordinate time can be defined by selecting a set of worldlines and assigning systematic time intervals to them. Understanding these distinctions is crucial for interpreting scenarios in general relativity and special relativity.
  • #31
Ibix said:
At some point we need to state that some of the numbers in our model correspond to readings on some instrument in the real world.
Yes, but if we are doing things properly, none of those numbers will be simple coordinate values or simple coordinate components of tensors. Every number that corresponds to readings on some instrument in the real world will be expressed as an invariant--a number that is independent of any choice of coordinates.

Unfortunately, many sources gloss over this fact and focus on examples (such as an inertial frame in SR, realized by sets of clocks and rulers as Einstein, for example, did) where what we would normally call coordinate values or component values are numerically equal to relevant invariants for expressing distances and times. This unfortunately invites the mistaken belief that the coordinate or component values themselves are physically meaningful. But this conflation of the two distinct concepts only works for particular choices of coordinates in particular highly special spacetimes, and needs to be unlearned as soon as you go beyond those special cases.
 
  • Like
Likes Dale and cianfa72
Physics news on Phys.org
  • #32
PeterDonis said:
Yes, but if we are doing things properly, none of those numbers will be simple coordinate values or simple coordinate components of tensors.
Yes of course. Nevertheless, as said before, I believe it is really important to have --at least in principle-- a physical operative procedure to assign such coordinates to events in spacetime.
 
  • #33
cianfa72 said:
I believe it is really important to have --at least in principle-- a physical operative procedure to assign such coordinates to events in spacetime.
For making actual measurements, yes, you have to have some way of doing this. A good example would be the way barycentric coordinates for the solar system are defined and how they are matched up with actual observational data.

However, if we are talking about theoretical physics, often it is not even possible to define such a procedure, at least not for an entire spacetime. For example, consider the interior of a black hole: nobody who falls in can send any measurement data back out, so there is no way for anyone outside to have a physical procedure to assign coordinates to any events inside the hole. But that doesn't mean we can't build theoretical models of the interiors of black holes, and use coordinates in those models.
 
  • #34
PeterDonis said:
However, if we are talking about theoretical physics, often it is not even possible to define such a procedure, at least not for an entire spacetime. For example, consider the interior of a black hole: nobody who falls in can send any measurement data back out, so there is no way for anyone outside to have a physical procedure to assign coordinates to any events inside the hole.
In BH case, what we get is basically an "extension" for the BH interior of the exterior solution given in coordinates for which we know in advance their physical interpretation (at least for some of them).

As explained in Carroll we start assuming a spherical symmetry for the solution we're looking for. This implies since the beginning the enforcement of a metric with the symmetry of ##S^2## sphere -- i.e. the solution spacetime is foliated by 2-spheres. Each of them is parametrized/labeled by parameters ##t,r##.

Now my point is that from a physical viewpoint we know what a 2-sphere is. For a fixed ##t## we don't know in advance whether the geometry of the ##t= \text{const}## hypersurface will or will not be Euclidean, however in principle/imagination we know that we can build in the BH exterior region a family of concentric shells (2-spheres) parametrized by ##r## foliating that spacelike hypersurface (even though we do not know in advance the physical interpretation/properties of ##r## parameter).

Note indeed that Carroll in section 7 of his Lecture Notes on GR assumes since the beginning the following metric for each 2-sphere
$$d\Omega^2 = d\theta^2 + sin^2\theta d\phi^2$$
 
Last edited:
  • Like
Likes vanhees71
  • #35
cianfa72 said:
In BH case, what we get is basically an "extension" for the BH interior of the exterior solution given in coordinates for which we know in advance their physical interpretation (at least for some of them).
Yes, but that's still not the same as having "a physical operative procedure" for assigning coordinates in the interior. All of the things you discuss are theoretical items; they're not the same as having actual, physical observers that can exchange information in order to physically assign coordinates.
 
  • Like
Likes cianfa72
  • #36
PeterDonis said:
All of the things you discuss are theoretical items; they're not the same as having actual, physical observers that can exchange information in order to physically assign coordinates.
Yes, nevertheless there is in principle a physical procedure to assign them (at least on the exterior region). Take for example the Schwarzschild ##r## coordinate: it is basically the length of maximal circumference divided by ##2 \pi##.

See also Exploring Black Holes, 2nd edition - Taylor, Wheeler -- ch 2 section 4
 
Last edited:
  • #37
cianfa72 said:
nevertheless there is in principle a physical procedure to assign them (at least on the exterior region).
Yes, in the exterior region. But not in the interior region. And the interior region is part of the spacetime, so you do not have a physical procedure to assign coordinates on the entire spacetime, only on a portion of it. Which was my point.
 
  • Like
Likes cianfa72

Similar threads

Replies
9
Views
2K
  • · Replies 27 ·
Replies
27
Views
3K
  • · Replies 20 ·
Replies
20
Views
3K
Replies
6
Views
767
  • · Replies 1 ·
Replies
1
Views
926
Replies
35
Views
948
  • · Replies 31 ·
2
Replies
31
Views
2K
  • · Replies 58 ·
2
Replies
58
Views
5K
  • · Replies 17 ·
Replies
17
Views
3K
  • · Replies 32 ·
2
Replies
32
Views
3K