Different formulae for moment of inertia

In summary, the formula for moment of inertia is ##I = MR^2##, but there are also other formulas for different objects that can be derived through integration. The formula ##I = MR^2## is used for objects rotating about their center, specifically for a uniform ring where each particle has the same distance from the axis of rotation. To calculate moment of inertia for more complex objects, integration can be used by representing the object as a set of points and summing up the infinitesimal moments of inertia for each point. This can be seen in the example of determining the moment of inertia for a solid cylinder about its central axis.
  • #1
Zynoakib
70
0
I know the formula for moment of inertia is but there are I = MR^2 but there are also formulae for different objects as shown in the picture.
mifull.jpg

So, how and when do you use I = MR^2 ? Just in case of (a)?

Thanks!
 
Physics news on Phys.org
  • #2
The moment of inertia is a sum of all ##mr^2## for the particles in the system (or an integral for a continuous system of masses). The formulas you posted can all be derived by integrating.

Zynoakib said:
So, how and when do you use I = MR^2 ? Just in case of (a)?

For an object rotating about its center the uniform ring is the only one for which the moment of inertia is the ##MR^2## This is because each particle has the same distance from the axis of rotation so the sum essentially amounts to summing over all of the masses.
 
  • Like
Likes Zynoakib
  • #3
Thanks! Nice and clear.
 
  • #4
I just want to get a little deep into this and present what brainpushups said mathematically, any object can be represented at a set of points, each of these point have a moment of inertia ## \delta I = \delta m\cdot r^2 ## (this is true because they are points each of mass delta m), and we know that ## I_{net} = \sum \limits_i \delta I ##, if we want to sum infinetely small quantities, our best option would be an integral so ## I_{net} = \int \delta I = \int r^2 dm ## .
For example if you want to determine to moment of intertia of a solid cylinder about its central axis, you start by defining ## \rho = \frac{m}{V} = \frac {m}{\pi R^2L} ## so that ## dm = \rho dV = \rho r\cdot dr\cdot d\theta\cdot dz ## and then set the boundaries, for example ## 0 \leftarrow r \rightarrow R, 0 \leftarrow \theta \rightarrow 2\pi ## and ## 0 \leftarrow z \rightarrow L ## and finally integrate ## I_{net} = \rho \int_0^L \int_0^{2\pi} \int_0^R r^3 \cdot dr\cdot d\theta\cdot dz = 2\pi L\rho \int_0^R r^3 \cdot dr = 2\pi L\cdot \frac {m}{\pi R^2L} \cdot \frac{R^4}{4} = \frac{1}{2} mR^2 ## Cheers :D
 
  • Like
Likes Zynoakib

Similar threads

Back
Top