Is there an f(x) which is differentiable n times in a closed interval and (n+1) times in an open interval? I think I saw this in a paper related to Taylor's theorem (could be something else though). It didn't make sense to me, how can something be differentiable more in an interval that contains two less numbers? Is this something to do with the fact that a function might not be differentiable at the two end points of a closed interval because it does have the limit function coming from two sides? (a+0 and a-0) Sorry the post got long :)(adsbygoogle = window.adsbygoogle || []).push({});

**Physics Forums - The Fusion of Science and Community**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Differentiability in an open and closed intervals

Loading...

Similar Threads - Differentiability open closed | Date |
---|---|

B Product rule OR Partial differentiation | Jan 10, 2018 |

A Differential operator, inverse thereof | Jan 9, 2018 |

I Differentiation of sin function where's my mistake? | Dec 21, 2017 |

I Open interval (set) end points and differentiability. | Jul 30, 2016 |

Differentiability on an Open Interval | Jan 14, 2011 |

**Physics Forums - The Fusion of Science and Community**