I Differentiability of convolution

Click For Summary
The discussion centers on the differentiability of the convolution of two continuous functions, f and g, defined on the right half-line. It is established that if either function is differentiable, the convolution f✶g is also differentiable. However, the conversation raises concerns about cases where both functions are nowhere differentiable, referencing a 1951 paper by Jarník that demonstrates a continuous function whose convolution is only differentiable at zero. Participants express appreciation for the insights and share their experiences with the topic. The exploration of this mathematical concept highlights the complexities involved in convolution and differentiability.
Zafa Pi
Messages
631
Reaction score
132
If f and g are continuous functions on the right half-line, [0,∞], then f✶g, the convolution of f and g, is defined by
f✶g(x) = ∫[0,x] f(t)g(x-t)dt.
I would like to know if f✶g is a differentiable function of x.
If, for example, g(t) = 1 for t ≥ 0 then f✶g(x) = ∫[0,x]f(t)dt has a derivative equal to f(x). But what about in general?
 
Physics news on Phys.org
If either ##f## or ##g## is differentiable, then so is the convolution.
 
micromass said:
If either ##f## or ##g## is differentiable, then so is the convolution.
Great, thanks. I now see that. But what happens if both f and g are nowhere differentiable?
 
The following paper from 1951 constructs a continuous function x, for which the convolution x*x is only differentiable in 0.

Jarník, V. "Sur le produit de composition de deux fonctions continues." Studia Mathematica 12.1 (1951): 58-64

https://eudml.org/doc/216531
 
Samy_A said:
The following paper from 1951 constructs a continuous function x, for which the convolution x*x is only differentiable in 0.

Jarník, V. "Sur le produit de composition de deux fonctions continues." Studia Mathematica 12.1 (1951): 58-64

https://eudml.org/doc/216531
Merci beaucoup. It seems that I am in good company since Mikusinski asked the question as well The question came to me as I was reading his "operational calculus". I worked on it for a day and gave up. Now I'll pour over the article. Thanks again.
 

Similar threads

  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
1
Views
2K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 2 ·
Replies
2
Views
3K