- #1
accountkiller
- 121
- 0
Homework Statement
Find the general solution by using either the "distinct, real roots" theorem or the "repeated roots" theorem.
9y'' - 12y' + 4y = 0
Homework Equations
"distinct, real roots" theorem - "If our roots are real & distinct, we should have solutions y1=er1x and y2=erxx, so y(x) = c1er1x + c2r2x is the general solution.
"repeated roots" theorem - "If our roots are r1=r2, then the general solution is y(x) = (c1+c2x)er1x.
The Attempt at a Solution
9y'' - 12y' + 4y = 0
9r2 - 12r + 4 = 0
Using the quadratic formula, I got r = 2/3.
I'm confused because I only have one r. For the "distinct, real roots" theorem, the general solution is y(x) = c1er1x + c2r2x, so what do I do with just my one r? Do I just leave out the second part of the general solution? Or do I use the "repeated roots" theorem since I only have one r and that general solution only includes one r?