Differential equation for the acceleration of an oscillating particle

Click For Summary
SUMMARY

The discussion revolves around solving the second-order differential equation for the acceleration of an oscillating particle, defined by the equation a = -x/9. The participants explore methods to determine the position of the particle at t = 3π/2, given initial conditions x(0) = 0 and v(0) = v0. Key insights include the importance of integrating the equation correctly and recognizing that the constant of integration can be determined using initial conditions, leading to the relationship v² = v0² - (1/9)x².

PREREQUISITES
  • Understanding of second-order differential equations
  • Familiarity with simple harmonic motion concepts
  • Knowledge of integration techniques, particularly for trigonometric substitutions
  • Ability to apply initial conditions to solve for constants of integration
NEXT STEPS
  • Study the derivation of simple harmonic motion equations
  • Learn techniques for integrating expressions involving square roots
  • Explore the application of initial conditions in differential equations
  • Investigate the role of constants of integration in physical systems
USEFUL FOR

Students studying physics or mathematics, particularly those focused on mechanics and differential equations, as well as educators seeking to clarify concepts in simple harmonic motion.

Kampret
Messages
33
Reaction score
0

Homework Statement


acceleration of certain oscillating particle described by a = -x/9 determine the position of this particle when t = 3π/2
if when t=0 x=0 and v=v0

Homework Equations


dv/dt=a

The Attempt at a Solution


frankly I am not sure how to start but i have two ways in my mind(even i doubt both of them) the first is using
dx/dx dv/dt=a
dx/dx dv/dt = -x/9
v dv = -x²/18
v²=-x²/9 but after this I am can't go any futher since v = √(-x²/9) and √(-) is impossible
so my second attempt is
dv/dt=a
dv/dt=-x/9
dv=-x/9dt
integrating both sides(i doubt this one is correct because x is somewhat have t fraction within it and it different than some unrelated variable. so I am not sure about this one)
v=-xt/9+c (here I am also don't understand since in the problem just written when t =0 x=0 ←exact value so it help me determine the c of x but v=v0 so ?im can't understand this) if i try insert t by 0, v0 = c which i don't know exact value for both sides so i just go with when t=0 v=0 so the c value is zero even though i fully understand that VERY different between v=0 and v0
but i just confuse!
so since c=0 v become =-xt/9
and x is
dx/dt=-xt/9 and
dx/x=-t/9dt
ln x = -t²/18+c
but i i know i can't do anything after this since if if i subsitute x with 0 ln0 is absurd
at last I am hope someone can help me with this problem,im know this one (my attempt) was very messy until to the point it embarrassing for me to post this so i beg once again please how the correct method to solve this problem

ps:for delta² or sammys if by any chance both of you see this post please help me
 
Last edited by a moderator:
Physics news on Phys.org
Kampret said:

Homework Statement


acceleration of certain oscillating particle described by a = -x/9 determine the position of this particle when t = 3π/2
if when t=0 x=0 and v=v0

Homework Equations


dv/dt=a

The Attempt at a Solution


frankly I am not sure how to start but i have two ways in my mind(even i doubt both of them) the first is using
dx/dx dv/dt=a
dx/dx dv/dt = -x/9
v dv = -x²/18
v²=-x²/9 but after this I am can't go any futher since v = √(-x²/9) and √(-) is impossible
You omitted the constant of integration.
 
  • Like
Likes   Reactions: Kampret
Kampret said:

Homework Statement


acceleration of certain oscillating particle described by a = -x/9 determine the position of this particle when t = 3π/2
if when t=0 x=0 and v=v0

Homework Equations


dv/dt=a

The Attempt at a Solution


frankly I am not sure how to start but i have two ways in my mind(even i doubt both of them) the first is using
dx/dx dv/dt=a
dx/dx dv/dt = -x/9
v dv = -x²/18
v²=-x²/9 but after this I am can't go any futher since v = √(-x²/9) and √(-) is impossible
so my second attempt is
dv/dt=a
dv/dt=-x/9
dv=-x/9dt
integrating both sides(i doubt this one is correct because x is somewhat have t fraction within it and it different than some unrelated variable. so I am not sure about this one)
v=-xt/9+c (here I am also don't understand since in the problem just written when t =0 x=0 ←exact value so it help me determine the c of x but v=v0 so ?im can't understand this) if i try insert t by 0, v0 = c which i don't know exact value for both sides so i just go with when t=0 v=0 so the c value is zero even though i fully understand that VERY different between v=0 and v0
but i just confuse!
so since c=0 v become =-xt/9
and x is
dx/dt=-xt/9 and
dx/x=-t/9dt
ln x = -t²/18+c
but i i know i can't do anything after this since if if i subsitute x with 0 ln0 is absurd
at last I am hope someone can help me with this problem,im know this one (my attempt) was very messy until to the point it embarrassing for me to post this so i beg once again please how the correct method to solve this problem

ps:for delta² or sammys if by any chance both of you see this post please help me

Ii cannot follow your logic, and I have doubts about the validity of most of your formulas.

This problem involves the solution of a second-order differential equation
$$\frac{d^2 x}{dt^2} = -\frac{1}{9} x, \;\; x(0)=0, \; \left. \frac{dx}{dt}\right|_{t=0} = v_0.$$

Google "simple harmonic motion".
 
Ray Vickson said:
Ii cannot follow your logic, and I have doubts about the validity of most of your formulas.

This problem involves the solution of a second-order differential equation
$$\frac{d^2 x}{dt^2} = -\frac{1}{9} x, \;\; x(0)=0, \; \left. \frac{dx}{dt}\right|_{t=0} = v_0.$$

Google "simple harmonic motion".
thanks for your tips
 
Kampret said:
thanks for your tips

You started off OK then went astray. You had found that ##dx^2/dt = -(1/9) d v^2/dt,## which is true. That implies that
$$ \frac{d}{dt} \left( v^2 +\frac{1}{9} x^2 \right) = 0,$$
hence ##v^2 + (1/9) x^2 = \text{constant}.## The constant will be ##> 0## because both ##v^2, x^2## are ##\geq 0## and are not both equal to zero. If you determine the constant using the given problem information, you will be part-way to a solution, because you will have
$$v = \frac{dx}{dt} = \begin{cases} \sqrt{c^2 - \frac{1}{9} x^2 }, & \text{if} \;v \geq 0 \\
-\sqrt{ c^2 - \frac{1}{9} x^2 }, & \text{if} \;v < 0
\end{cases} $$
where ##c^2 > 0## is the constant.

The issue you will face is the proper way to switch from one choice of sign to the other. There are ways to proceed, but I cannot say more without violating PF helping rules.
 
Ray Vickson said:
You started off OK then went astray. You had found that ##dx^2/dt = -(1/9) d v^2/dt,## which is true. That implies that
$$ \frac{d}{dt} \left( v^2 +\frac{1}{9} x^2 \right) = 0,$$
hence ##v^2 + (1/9) x^2 = \text{constant}.## The constant will be ##> 0## because both ##v^2, x^2## are ##\geq 0## and are not both equal to zero. If you determine the constant using the given problem information, you will be part-way to a solution, because you will have
$$v = \frac{dx}{dt} = \begin{cases} \sqrt{c^2 - \frac{1}{9} x^2 }, & \text{if} \;v \geq 0 \\
-\sqrt{ c^2 - \frac{1}{9} x^2 }, & \text{if} \;v < 0
\end{cases} $$
where ##c^2 > 0## is the constant.

The issue you will face is the proper way to switch from one choice of sign to the other. There are ways to proceed, but I cannot say more without violating PF helping rules.
thats was really helpful, but please stick a bit with me,because frankly i still confused back at v²=-x²/9 like chestermiller said after first intergral, i have omitted the C which that should be
v²=-x²/9 + C and by given information when t=0 v=v0 and x=0 it became (v0)²=C or if i write completely the equation of v have turned into v²=v0²-x²/9 but frankly this doesn't give me hint about the value since v0² just turned into C so what should i do in order to determine the value? considering your writting in the end
$$v = \frac{dx}{dt} = \begin{cases} \sqrt{c^2 - \frac{1}{9} x^2 }, & \text{if} \;v \geq 0 \\
-\sqrt{ c^2 - \frac{1}{9} x^2 }, & \text{if} \;v < 0
\end{cases} $$ since C² not equal with zero there should any way to turn C into some number
and second like you see above after i use the given information v0² is turned into C so could you explain how in the end you write C² instead of v0²
 
Kampret said:
thats was really helpful, but please stick a bit with me,because frankly i still confused back at v²=-x²/9 like chestermiller said after first intergral, i have omitted the C which that should be
v²=-x²/9 + C and by given information when t=0 v=v0 and x=0 it became (v0)²=C or if i write completely the equation of v have turned into v²=v0²-x²/9 but frankly this doesn't give me hint about the value since v0² just turned into C so what should i do in order to determine the value? considering your writting in the end
$$v = \frac{dx}{dt} = \begin{cases} \sqrt{c^2 - \frac{1}{9} x^2 }, & \text{if} \;v \geq 0 \\
-\sqrt{ c^2 - \frac{1}{9} x^2 }, & \text{if} \;v < 0
\end{cases} $$ since C² not equal with zero there should any way to turn C into some number
and second like you see above after i use the given information v0² is turned into C so could you explain how in the end you write C² instead of v0²
##c=v_0##
 
Chestermiller said:
##c=v_0##
ok, so what should i do to integrating v so far i only faced problem like this √(h²-x²)dx where h is constant so i can turn x into sin and dx into cos. but this just worked because there is both x and dx in that equation
but here i encounter like what ray's wrote
v=√(c²-1/9x²) so for the second integral
dx/dt = v which
dx= √(c²-1/9x²)dt ←here is what i don't understand because there is dt and not dx so i can't use trigonometrical subtitution and how i can solve root equation integral without trigonometric subtitution?
 
Kampret said:
ok, so what should i do to integrating v so far i only faced problem like this √(h²-x²)dx where h is constant so i can turn x into sin and dx into cos. but this just worked because there is both x and dx in that equation
but here i encounter like what ray's wrote
v=√(c²-1/9x²) so for the second integral
dx/dt = v which
dx= √(c²-1/9x²)dt ←here is what i don't understand because there is dt and not dx so i can't use trigonometrical subtitution and how i can solve root equation integral without trigonometric subtitution?
Get all the x's on one side of the equation (solve for dt)
 
  • Like
Likes   Reactions: Kampret
  • #10
Kampret said:
thats was really helpful, but please stick a bit with me,because frankly i still confused back at v²=-x²/9 like chestermiller said after first intergral, i have omitted the C which that should be
v²=-x²/9 + C and by given information when t=0 v=v0 and x=0 it became (v0)²=C or if i write completely the equation of v have turned into v²=v0²-x²/9 but frankly this doesn't give me hint about the value since v0² just turned into C so what should i do in order to determine the value? considering your writting in the end
$$v = \frac{dx}{dt} = \begin{cases} \sqrt{c^2 - \frac{1}{9} x^2 }, & \text{if} \;v \geq 0 \\
-\sqrt{ c^2 - \frac{1}{9} x^2 }, & \text{if} \;v < 0
\end{cases} $$ since C² not equal with zero there should any way to turn C into some number
and second like you see above after i use the given information v0² is turned into C so could you explain how in the end you write C² instead of v0²

I wrote "constant" first, then called that constant ##c^2## (to emphasize the fact that it is ##>0##). I was leaving it up to YOU to recognize that, in fact, ##c^2 = v_0^2.## I did not write that immediately, because I did not want to give away too much of the solution!
 
  • Like
Likes   Reactions: Kampret

Similar threads

  • · Replies 22 ·
Replies
22
Views
2K
Replies
4
Views
2K
Replies
2
Views
2K
  • · Replies 105 ·
4
Replies
105
Views
7K
Replies
19
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
Replies
21
Views
2K
Replies
3
Views
2K
Replies
32
Views
3K
Replies
6
Views
2K