Differentiation help (stationary points)

Click For Summary
SUMMARY

This discussion focuses on finding stationary points of the function $L(\lambda) = \lambda^{150}e^{-3\lambda}$. The first derivative, $L'(\lambda) = 3\lambda^{149}e^{-3\lambda} (50-\lambda)$, is zero at $\lambda = 50$, indicating a maximum at this point. The first derivative test confirms that $L$ is increasing for $\lambda < 50$ and decreasing for $\lambda > 50$. The second derivative test can further validate the nature of the stationary point, with $L''(50) < 0$ confirming a maximum.

PREREQUISITES
  • Understanding of calculus concepts, specifically derivatives
  • Familiarity with the first and second derivative tests for extrema
  • Knowledge of exponential functions and their properties
  • Ability to analyze function behavior based on derivative signs
NEXT STEPS
  • Study the first derivative test for extrema in greater detail
  • Learn about the second derivative test for confirming maxima and minima
  • Explore the properties of exponential functions and their derivatives
  • Practice finding stationary points for various types of functions
USEFUL FOR

Students and professionals in mathematics, particularly those studying calculus, as well as anyone needing to analyze function behavior for optimization problems.

Lhh
Messages
3
Reaction score
0
I’m struggling with questions c, e and f.
I don’t think I understand how to find stationary points.

BCF8EB56-FD54-40F7-9614-081856A89587.png
 
Last edited by a moderator:
Physics news on Phys.org
stationary points occur where the derivative is zero or is undefined.
in this case, $L’$ is defined everywhere in the function’s given domain.

skeeter said:
$L(\lambda) = \lambda^{150}e^{-3\lambda}$

$L’(\lambda) = 150 \lambda^{149} e^{-3\lambda} - 3\lambda^{150} e^{-3\lambda}$

$L’(\lambda) = 3\lambda^{149}e^{-3\lambda} (50-\lambda)$

$L’(\lambda) = 0$ at $\lambda = 50$

$\lambda <50 \implies L’ > 0 \implies L$ is increasing.
$\lambda >50 \implies L’ <0 \implies L$ is decreasing
therefore, $L$ has a maximum at $\lambda =50$
this method is called the 1st derivative test for extrema.

You could also evaluate the value of $L’’(50)$ to determine if the stationary point is a maximum or minimum.
if $L’’(50) <0$, then $L(50)$ is a maximum
if $L’’(50) >0$, then $L(50)$ is a minimum
this is the 2nd derivative test for extrema.

see what you can get done with the log function
 
skeeter said:
stationary points occur where the derivative is zero or is undefined.
in this case, $L’$ is defined everywhere in the function’s given domain.
$L’(\lambda) = 0$ at $\lambda = 50$

$L’(\lambda) = 0$ at $\lambda = 50$ OR at $\lambda= 0$

$\lambda <50 \implies L’ > 0 \implies L$ is increasing.
$\lambda >50 \implies L’ <0 \implies L$ is decreasing
therefore, $L$ has a maximum at $\lambda =50$
this method is called the 1st derivative test for extrema.

You could also evaluate the value of $L’’(50)$ to determine if the stationary point is a maximum or minimum.
if $L’’(50) <0$, then $L(50)$ is a maximum
if $L’’(50) >0$, then $L(50)$ is a minimum
this is the 2nd derivative test for extrema.

see what you can get done with the log function
 
Country Boy said:
$L’(\lambda) = 0$ at $\lambda = 50$ OR at $\lambda= 0$

$\lambda = 0$ is not in the given domain of the function ... reference the problem statement in post #1
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 46 ·
2
Replies
46
Views
5K
  • · Replies 1 ·
Replies
1
Views
4K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 14 ·
Replies
14
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 14 ·
Replies
14
Views
2K