Differentiation of functional integral (Blundell Quantum field theory)

Plantation
Messages
14
Reaction score
1
Homework Statement
$$G_0(x,y) = \frac{\int \mathcal{D}\phi \phi(x) \phi(y) e^{i\int d^4 x \mathcal{L}_0[ \phi]}}{\int \mathcal{D}\phi e^{i \int d^4x \mathcal{L}_0[\phi]}}$$
Relevant Equations
$$ G^{(n)}_0 ( x_1, \dots ,x_n) = \frac{1}{i^n} \frac{\delta^n \bar{Z}_0 [J]}{\delta J(x_1) \dots \delta J(x_n)}|_{J=0}
= \frac{1}{i^n}\frac{1}{Z_0[J=0]}\frac{1}{i^n} \frac{\delta^n Z_0 [J]}{\delta J(x_1) \dots \delta J(x_n)}|_{J=0}$$
I am reading the Lancaster & Blundell, Quantum field theory for gifted amateur, p.225 and stuck at understanding some derivations.

We will calculate a generating functional for the free scalar field. The free Lagrangian is given by

$$ \mathcal{L}_0 = \frac{1}{2}(\partial _\mu \phi)^2 - \frac{m^2}{2}\phi^2. \tag{24.9}$$

And in the p.224, he get expression for normalized generating functional for the free scalar field as

$$ \bar{Z}_0[J] = \frac{ \int \mathcal{D} \phi e^{\frac{i}{2} \int d^4 x \phi \{ - ( \partial^2 + m^2) \} \phi + i \int d^4x J \phi }}{\int \mathcal{D} \phi e^{\frac{i}{2} \int d^4 x \phi \{ - ( \partial^2 + m^2)\} \phi} } = e^{- \frac{1}{2} \int d^4x d^4 y J(x) \Delta(x-y)J(y)} \tag{24.17} $$

Here, ##\Delta(x,y)=\Delta(x-y)## is the free Feynman propagator (C.f. their book (17.24) (p.159) )

In the page 225, he saids that " Specifically we have for free fields that the propagator is given, in terms of the normalized generating functional, by (C.f. their book (22.8) )

$$ G^{(n)}_0 ( x_1, \dots ,x_n) = \frac{1}{i^n} \frac{\delta^n \bar{Z}_0 [J]}{\delta J(x_1) \dots \delta J(x_n)}|_{J=0}
= \frac{1}{i^n}\frac{1}{Z_0[J=0]}\frac{1}{i^n} \frac{\delta^n Z_0 [J]}{\delta J(x_1) \dots \delta J(x_n)}|_{J=0} \tag{24.20}$$"

, where ##G^(n)(x_1, \dots x_n)## is the Green's function.

And next, he saids

"We'll evaluate this in two different ways for the single-particle propagator ##G_0(x,y)##. Differentiating the expression for the functional integral ##\bar{Z}_0[J]## with respect to the ##J##'s gives us

$$G_0(x,y) = \frac{\int \mathcal{D}\phi \phi(x) \phi(y) e^{i\int d^4 x \mathcal{L}_0[ \phi]}}{\int \mathcal{D}\phi e^{i \int d^4x \mathcal{L}_0[\phi]}} \tag{24.21}$$

while differentiating the expression for the normalized generating functional ##\bar{Z}_0[J] = e^{- \frac{1}{2} \int d^4x d^4 y J(x) \Delta(x,y)J(y)} ## ( C.f. their book (24.17) )gives us the expected answer ##G_0(x,y) = \Delta(x,y) ##."

And why these two statements are true? I've been trying to calculate these formulas continuously by brutal force differentiation but I don't know how to perform differentiation exactly at all. What should I note to make calculations easier? Can anyone give me a hint or helps?
 
Physics news on Phys.org
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top