Differentiation of functional integral (Blundell Quantum field theory)

Click For Summary
The discussion focuses on understanding the derivation of the generating functional for the free scalar field as presented in Lancaster & Blundell's Quantum Field Theory. The normalized generating functional is expressed in terms of the free Feynman propagator, with a specific emphasis on calculating the single-particle propagator, G_0(x,y). Two methods for evaluating G_0 are highlighted: one through direct differentiation of the functional integral and another via the normalized generating functional. The participant is seeking clarification on the differentiation process, expressing difficulty in performing the calculations and requesting guidance. The conversation underscores the importance of mastering differentiation techniques in quantum field theory for accurate results.
Plantation
Messages
19
Reaction score
1
Homework Statement
$$G_0(x,y) = \frac{\int \mathcal{D}\phi \phi(x) \phi(y) e^{i\int d^4 x \mathcal{L}_0[ \phi]}}{\int \mathcal{D}\phi e^{i \int d^4x \mathcal{L}_0[\phi]}}$$
Relevant Equations
$$ G^{(n)}_0 ( x_1, \dots ,x_n) = \frac{1}{i^n} \frac{\delta^n \bar{Z}_0 [J]}{\delta J(x_1) \dots \delta J(x_n)}|_{J=0}
= \frac{1}{i^n}\frac{1}{Z_0[J=0]}\frac{1}{i^n} \frac{\delta^n Z_0 [J]}{\delta J(x_1) \dots \delta J(x_n)}|_{J=0}$$
I am reading the Lancaster & Blundell, Quantum field theory for gifted amateur, p.225 and stuck at understanding some derivations.

We will calculate a generating functional for the free scalar field. The free Lagrangian is given by

$$ \mathcal{L}_0 = \frac{1}{2}(\partial _\mu \phi)^2 - \frac{m^2}{2}\phi^2. \tag{24.9}$$

And in the p.224, he get expression for normalized generating functional for the free scalar field as

$$ \bar{Z}_0[J] = \frac{ \int \mathcal{D} \phi e^{\frac{i}{2} \int d^4 x \phi \{ - ( \partial^2 + m^2) \} \phi + i \int d^4x J \phi }}{\int \mathcal{D} \phi e^{\frac{i}{2} \int d^4 x \phi \{ - ( \partial^2 + m^2)\} \phi} } = e^{- \frac{1}{2} \int d^4x d^4 y J(x) \Delta(x-y)J(y)} \tag{24.17} $$

Here, ##\Delta(x,y)=\Delta(x-y)## is the free Feynman propagator (C.f. their book (17.24) (p.159) )

In the page 225, he saids that " Specifically we have for free fields that the propagator is given, in terms of the normalized generating functional, by (C.f. their book (22.8) )

$$ G^{(n)}_0 ( x_1, \dots ,x_n) = \frac{1}{i^n} \frac{\delta^n \bar{Z}_0 [J]}{\delta J(x_1) \dots \delta J(x_n)}|_{J=0}
= \frac{1}{i^n}\frac{1}{Z_0[J=0]}\frac{1}{i^n} \frac{\delta^n Z_0 [J]}{\delta J(x_1) \dots \delta J(x_n)}|_{J=0} \tag{24.20}$$"

, where ##G^(n)(x_1, \dots x_n)## is the Green's function.

And next, he saids

"We'll evaluate this in two different ways for the single-particle propagator ##G_0(x,y)##. Differentiating the expression for the functional integral ##\bar{Z}_0[J]## with respect to the ##J##'s gives us

$$G_0(x,y) = \frac{\int \mathcal{D}\phi \phi(x) \phi(y) e^{i\int d^4 x \mathcal{L}_0[ \phi]}}{\int \mathcal{D}\phi e^{i \int d^4x \mathcal{L}_0[\phi]}} \tag{24.21}$$

while differentiating the expression for the normalized generating functional ##\bar{Z}_0[J] = e^{- \frac{1}{2} \int d^4x d^4 y J(x) \Delta(x,y)J(y)} ## ( C.f. their book (24.17) )gives us the expected answer ##G_0(x,y) = \Delta(x,y) ##."

And why these two statements are true? I've been trying to calculate these formulas continuously by brutal force differentiation but I don't know how to perform differentiation exactly at all. What should I note to make calculations easier? Can anyone give me a hint or helps?
 
Physics news on Phys.org
At first, I derived that: $$\nabla \frac 1{\mu}=-\frac 1{{\mu}^3}\left((1-\beta^2)+\frac{\dot{\vec\beta}\cdot\vec R}c\right)\vec R$$ (dot means differentiation with respect to ##t'##). I assume this result is true because it gives valid result for magnetic field. To find electric field one should also derive partial derivative of ##\vec A## with respect to ##t##. I've used chain rule, substituted ##\vec A## and used derivative of product formula. $$\frac {\partial \vec A}{\partial t}=\frac...