Differentiation of functional integral (Blundell Quantum field theory)

Click For Summary
The discussion focuses on understanding the derivation of the generating functional for the free scalar field as presented in Lancaster & Blundell's Quantum Field Theory. The normalized generating functional is expressed in terms of the free Feynman propagator, with a specific emphasis on calculating the single-particle propagator, G_0(x,y). Two methods for evaluating G_0 are highlighted: one through direct differentiation of the functional integral and another via the normalized generating functional. The participant is seeking clarification on the differentiation process, expressing difficulty in performing the calculations and requesting guidance. The conversation underscores the importance of mastering differentiation techniques in quantum field theory for accurate results.
Plantation
Messages
19
Reaction score
1
Homework Statement
$$G_0(x,y) = \frac{\int \mathcal{D}\phi \phi(x) \phi(y) e^{i\int d^4 x \mathcal{L}_0[ \phi]}}{\int \mathcal{D}\phi e^{i \int d^4x \mathcal{L}_0[\phi]}}$$
Relevant Equations
$$ G^{(n)}_0 ( x_1, \dots ,x_n) = \frac{1}{i^n} \frac{\delta^n \bar{Z}_0 [J]}{\delta J(x_1) \dots \delta J(x_n)}|_{J=0}
= \frac{1}{i^n}\frac{1}{Z_0[J=0]}\frac{1}{i^n} \frac{\delta^n Z_0 [J]}{\delta J(x_1) \dots \delta J(x_n)}|_{J=0}$$
I am reading the Lancaster & Blundell, Quantum field theory for gifted amateur, p.225 and stuck at understanding some derivations.

We will calculate a generating functional for the free scalar field. The free Lagrangian is given by

$$ \mathcal{L}_0 = \frac{1}{2}(\partial _\mu \phi)^2 - \frac{m^2}{2}\phi^2. \tag{24.9}$$

And in the p.224, he get expression for normalized generating functional for the free scalar field as

$$ \bar{Z}_0[J] = \frac{ \int \mathcal{D} \phi e^{\frac{i}{2} \int d^4 x \phi \{ - ( \partial^2 + m^2) \} \phi + i \int d^4x J \phi }}{\int \mathcal{D} \phi e^{\frac{i}{2} \int d^4 x \phi \{ - ( \partial^2 + m^2)\} \phi} } = e^{- \frac{1}{2} \int d^4x d^4 y J(x) \Delta(x-y)J(y)} \tag{24.17} $$

Here, ##\Delta(x,y)=\Delta(x-y)## is the free Feynman propagator (C.f. their book (17.24) (p.159) )

In the page 225, he saids that " Specifically we have for free fields that the propagator is given, in terms of the normalized generating functional, by (C.f. their book (22.8) )

$$ G^{(n)}_0 ( x_1, \dots ,x_n) = \frac{1}{i^n} \frac{\delta^n \bar{Z}_0 [J]}{\delta J(x_1) \dots \delta J(x_n)}|_{J=0}
= \frac{1}{i^n}\frac{1}{Z_0[J=0]}\frac{1}{i^n} \frac{\delta^n Z_0 [J]}{\delta J(x_1) \dots \delta J(x_n)}|_{J=0} \tag{24.20}$$"

, where ##G^(n)(x_1, \dots x_n)## is the Green's function.

And next, he saids

"We'll evaluate this in two different ways for the single-particle propagator ##G_0(x,y)##. Differentiating the expression for the functional integral ##\bar{Z}_0[J]## with respect to the ##J##'s gives us

$$G_0(x,y) = \frac{\int \mathcal{D}\phi \phi(x) \phi(y) e^{i\int d^4 x \mathcal{L}_0[ \phi]}}{\int \mathcal{D}\phi e^{i \int d^4x \mathcal{L}_0[\phi]}} \tag{24.21}$$

while differentiating the expression for the normalized generating functional ##\bar{Z}_0[J] = e^{- \frac{1}{2} \int d^4x d^4 y J(x) \Delta(x,y)J(y)} ## ( C.f. their book (24.17) )gives us the expected answer ##G_0(x,y) = \Delta(x,y) ##."

And why these two statements are true? I've been trying to calculate these formulas continuously by brutal force differentiation but I don't know how to perform differentiation exactly at all. What should I note to make calculations easier? Can anyone give me a hint or helps?
 
Physics news on Phys.org
(a) The polarisation pattern is elliptical with maximum (1,1) and minimum (-1,-1), and anticlockwise in direction. (b) I know the solution is a quarter-wave plate oriented π/4, and half-wave plate at π/16, but don't understand how to reach there. I've obtained the polarisation vector (cos π/8, isin π/8) so far. I can't find much online guidance or textbook material working through this topic, so I'd appreciate any help I can get. Also, if anyone could let me know where I can get more...

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
Replies
2
Views
2K
  • · Replies 9 ·
Replies
9
Views
3K
  • · Replies 19 ·
Replies
19
Views
3K
Replies
15
Views
3K
Replies
19
Views
3K
Replies
1
Views
2K
Replies
27
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K