Differentiation of functional integral (Blundell Quantum field theory)

Plantation
Messages
18
Reaction score
1
Homework Statement
$$G_0(x,y) = \frac{\int \mathcal{D}\phi \phi(x) \phi(y) e^{i\int d^4 x \mathcal{L}_0[ \phi]}}{\int \mathcal{D}\phi e^{i \int d^4x \mathcal{L}_0[\phi]}}$$
Relevant Equations
$$ G^{(n)}_0 ( x_1, \dots ,x_n) = \frac{1}{i^n} \frac{\delta^n \bar{Z}_0 [J]}{\delta J(x_1) \dots \delta J(x_n)}|_{J=0}
= \frac{1}{i^n}\frac{1}{Z_0[J=0]}\frac{1}{i^n} \frac{\delta^n Z_0 [J]}{\delta J(x_1) \dots \delta J(x_n)}|_{J=0}$$
I am reading the Lancaster & Blundell, Quantum field theory for gifted amateur, p.225 and stuck at understanding some derivations.

We will calculate a generating functional for the free scalar field. The free Lagrangian is given by

$$ \mathcal{L}_0 = \frac{1}{2}(\partial _\mu \phi)^2 - \frac{m^2}{2}\phi^2. \tag{24.9}$$

And in the p.224, he get expression for normalized generating functional for the free scalar field as

$$ \bar{Z}_0[J] = \frac{ \int \mathcal{D} \phi e^{\frac{i}{2} \int d^4 x \phi \{ - ( \partial^2 + m^2) \} \phi + i \int d^4x J \phi }}{\int \mathcal{D} \phi e^{\frac{i}{2} \int d^4 x \phi \{ - ( \partial^2 + m^2)\} \phi} } = e^{- \frac{1}{2} \int d^4x d^4 y J(x) \Delta(x-y)J(y)} \tag{24.17} $$

Here, ##\Delta(x,y)=\Delta(x-y)## is the free Feynman propagator (C.f. their book (17.24) (p.159) )

In the page 225, he saids that " Specifically we have for free fields that the propagator is given, in terms of the normalized generating functional, by (C.f. their book (22.8) )

$$ G^{(n)}_0 ( x_1, \dots ,x_n) = \frac{1}{i^n} \frac{\delta^n \bar{Z}_0 [J]}{\delta J(x_1) \dots \delta J(x_n)}|_{J=0}
= \frac{1}{i^n}\frac{1}{Z_0[J=0]}\frac{1}{i^n} \frac{\delta^n Z_0 [J]}{\delta J(x_1) \dots \delta J(x_n)}|_{J=0} \tag{24.20}$$"

, where ##G^(n)(x_1, \dots x_n)## is the Green's function.

And next, he saids

"We'll evaluate this in two different ways for the single-particle propagator ##G_0(x,y)##. Differentiating the expression for the functional integral ##\bar{Z}_0[J]## with respect to the ##J##'s gives us

$$G_0(x,y) = \frac{\int \mathcal{D}\phi \phi(x) \phi(y) e^{i\int d^4 x \mathcal{L}_0[ \phi]}}{\int \mathcal{D}\phi e^{i \int d^4x \mathcal{L}_0[\phi]}} \tag{24.21}$$

while differentiating the expression for the normalized generating functional ##\bar{Z}_0[J] = e^{- \frac{1}{2} \int d^4x d^4 y J(x) \Delta(x,y)J(y)} ## ( C.f. their book (24.17) )gives us the expected answer ##G_0(x,y) = \Delta(x,y) ##."

And why these two statements are true? I've been trying to calculate these formulas continuously by brutal force differentiation but I don't know how to perform differentiation exactly at all. What should I note to make calculations easier? Can anyone give me a hint or helps?
 
Physics news on Phys.org
Thread 'Help with Time-Independent Perturbation Theory "Good" States Proof'
(Disclaimer: this is not a HW question. I am self-studying, and this felt like the type of question I've seen in this forum. If there is somewhere better for me to share this doubt, please let me know and I'll transfer it right away.) I am currently reviewing Chapter 7 of Introduction to QM by Griffiths. I have been stuck for an hour or so trying to understand the last paragraph of this proof (pls check the attached file). It claims that we can express Ψ_{γ}(0) as a linear combination of...
Back
Top