Diffraction Grating - all visible light?

Click For Summary
To determine the smallest grating spacing for observing the entire visible spectrum (400nm to 700nm), the equation nλ = d sin θ is essential. The maximum wavelength for first-order diffraction is 700nm, and for second-order, it is 1400nm. The discussion raises questions about how to calculate the maximum angle for observing these wavelengths. Clarification on how to apply the grating equation effectively is needed. Understanding these principles will help in solving the problem accurately.
clamatoman
Messages
24
Reaction score
0

Homework Statement


Find the smallest grating spacing that let's you see the entire visible spectrum.
400nm to 700nm comprises the visible light spectrum.
no other information is given.

Homework Equations


nλ=d sin θ

The Attempt at a Solution


I am not sure how to start as all i have been given is a spectrum of wavelengths...?
 
Physics news on Phys.org
Well, apparently its 700nm. And 1400 nm for the second order.
 
What is the maximum angle where a wavelength can be observed?
 
If have close pipe system with water inside pressurized at P1= 200 000Pa absolute, density 1000kg/m3, wider pipe diameter=2cm, contraction pipe diameter=1.49cm, that is contraction area ratio A1/A2=1.8 a) If water is stationary(pump OFF) and if I drill a hole anywhere at pipe, water will leak out, because pressure(200kPa) inside is higher than atmospheric pressure (101 325Pa). b)If I turn on pump and water start flowing with with v1=10m/s in A1 wider section, from Bernoulli equation I...

Similar threads

  • · Replies 3 ·
Replies
3
Views
909
  • · Replies 8 ·
Replies
8
Views
7K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 6 ·
Replies
6
Views
927
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
3
Views
5K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 5 ·
Replies
5
Views
7K