Boltzmann transport equation
Hello Veejay:
You can demonstrate diffusion equation by means of Boltzmann transport equation with the term of "collision" proportional to difference between non-equilibrium and equilibrium distribution functions. If you set the proportionality constant 1/tau as v/lambda and assume that the non-equilibrium distribution function is very close to equilibrium distribution function, you can obtain a relationship between this two distribution functions.
You need to set a unidimensional concentration gradient and no electric field, and solve for the non-equilibrium distribution function. You will have it in terms of velocity, angle between velocity and gradient and equilibrium distribution function. If you assume the equilibrium distribution function as Maxwell-Boltzmann, you can use this expression for obtaining velocity in the standard way.
From velocity, you can obtain current, and this will be a negative constant times the unidimensional derivative of concentration.
The qualitative explanations about diffusion explain why we get a flux from high concentration to low concentration but do not say anything about why this flux is proportional to gradient. The above derivation proves that first Fick´s equation is by no means general and providing other circumstances, diffusion must obey other more complicate equations.
Keeping qualitative, as Modey3 already said, no particle know anything about the gradient, they are only following its random motion. For particles, the configuration in which there are a concentration gradient has a very little probability, but any other specific configuration has exactly the same little probability, so the particles does not know that their configuration is in some way special. For us, their configuration is truly special and when they eventually go to other equally probable configuration we see a big change.
The reason that we can detect a flux is not the behavior of particles but the gradient. The side with less particles has a lower probability to send particles to the other side. The side with more particles has a larger probability to send particles to the other side. The result is that more particles go from high concentration to low concentration than the reverse and the net flux is opposed to gradient.
Lydia Alvarez